
Computer Time Synchronization Concepts

Martin Burnicki

Meinberg Funkuhren
Bad Pyrmont

Germany

2014-04-29



Table of Contents
1  Introduction......................................................................................................................................1
2  Who Needs Time Synchronization?.................................................................................................2
3  Local Time Zones and World Time Scales......................................................................................3

3.1  Local Time Zones and Civil Time............................................................................................3
3.2  Daylight Saving Time...............................................................................................................3
3.3  Historical Greenwich Mean Time (GMT)................................................................................3
3.4  Atomic Time Scales and Atomic Clocks..................................................................................4
3.5  Atomic Time (TAI) And Coordinated Universal Time (UTC)................................................4
3.6  Leap Seconds............................................................................................................................6

4  How Computers Keep Time.............................................................................................................7
4.1  Basic Concepts..........................................................................................................................7
4.2  Resolution of the System Time.................................................................................................7
4.3  Why the Undisciplined Software Clock Drifts.........................................................................8
4.4  Disciplining the System Time...................................................................................................9
4.5  Computer UTC vs. Local Time................................................................................................9
4.6  How to Obtain Current Timezone Information......................................................................10
4.7  Why Not Discipline The Computer's Local Time..................................................................10

5  How Do I Know Which Time It Is?...............................................................................................11
6  Network Time Transfer Protocols..................................................................................................12

6.1  The Network Time Protocol (NTP)........................................................................................12
6.1.1  NTP Overview................................................................................................................12
6.1.2  NTP and Local Time.......................................................................................................13
6.1.3  Computer Platforms Supported by NTP.........................................................................13
6.1.4  NTP Naming Conventions: ntp or xntp..........................................................................13
6.1.5  The NTP Time Synchronization Hierarchy....................................................................14
6.1.6  NTP Built-In Redundancy..............................................................................................14
6.1.7  The NTP Drift File..........................................................................................................15
6.1.8  NTP Configuration Overview.........................................................................................15
6.1.9  NTP Configuration with Upstream NTP Servers...........................................................16
6.1.10  NTP's Local Clock Driver.............................................................................................16
6.1.11  NTP Configuration via DHCP......................................................................................16
6.1.12  NTP Access Restrictions...............................................................................................17
6.1.13  NTP with Meinberg Refclocks on Unix-like Systems..................................................17

6.1.13.1  Using Meinberg Refclocks with NTP's Parse Driver............................................17
6.1.13.2  The Parse Driver's Trust Time Parameter.............................................................18
6.1.13.3  External Meinberg Refclocks under Unix.............................................................19
6.1.13.4  Meinberg PCI and USB devices under Linux.......................................................19
6.1.13.5  Using Meinberg PCI and USB devices with NTP's SHM driver..........................20
6.1.13.6  Accuracy Considerations SHM versus Parse Driver.............................................20

6.1.14  NTP with Meinberg Devices under Windows..............................................................20
6.1.15  NTP Broadcast Mode....................................................................................................21
6.1.16  NTP Multicast Mode.....................................................................................................21
6.1.17  Using Hardware PPS Signals with NTP.......................................................................21
6.1.18  Getting Started with NTP and Troubleshooting...........................................................21

6.1.18.1  Don't Change the System Time While NTP Is Running.......................................22
6.1.18.2  Time Sources Need to Be Synchronized...............................................................22
6.1.18.3  Check if the NTP server claims to be synchronized.............................................23
6.1.18.4  Check if the client synchronizes to the server.......................................................23
6.1.18.5  If the client does not synchronize to the server, check if the NTP packet exchange 
works correctly.....................................................................................................................24

6.1.19  Using NTP in a Windows Active Directory Domain....................................................25



6.1.20  Building NTP from Sources..........................................................................................25
6.2  The Precision Time Protocol (PTP/IEEE1588)......................................................................26
6.3  RADclock Daemon.................................................................................................................26
6.4  The TIME and DAYTIME Protocols.....................................................................................26
6.5  Time Synchronization using NetBIOS/NETBEUI.................................................................26
6.6  General Network Time Transfer Aspects...............................................................................26
6.7  Latencies due to Network Packet Transfers...........................................................................27
6.8  Network Latency Compensation by the NTP Protocol..........................................................28
6.9  Network Latency Compensation by the PTP/IEEE1588 Protocol.........................................29
6.10  Comparison: NTP versus PTP/IEEE1588............................................................................30

7  Time Dissemination by Radio Signals...........................................................................................32
7.1  Time Dissemination by Satellites...........................................................................................32

7.1.1  GPS.................................................................................................................................32
7.1.2  GLONASS......................................................................................................................32
7.1.3  Compass / Beidou...........................................................................................................32
7.1.4  Galileo.............................................................................................................................33

7.2  Time Dissemination by Long Wave Transmitters..................................................................33
7.2.1  DCF77 in Germany.........................................................................................................33
7.2.2  MSF/Rugby in the United Kingdom...............................................................................33
7.2.3  WWVB in the United States...........................................................................................33
7.2.4  HBG in Switzerland........................................................................................................33
7.2.5  JJY in Japan....................................................................................................................34

7.3  Comparison Satellite Systems vs. Long Wave Signals..........................................................34
7.3.1  Signal Reception.............................................................................................................34
7.3.2  Signal Propagation Delay Compensation.......................................................................34

8  Hardware Reference Time Sources................................................................................................35
8.1  Reference Time Signal Type Considerations.........................................................................35

8.1.1  Satellite Signals...............................................................................................................35
8.1.2  Longwave Signals...........................................................................................................35
8.1.3  IRIG And Similar Timecode Signals..............................................................................36

8.1.3.1  Original IRIG Signals..............................................................................................36
8.1.3.2  AFNOR NF S87-500...............................................................................................38
8.1.3.3  IEEE 1344-1995 and IEEE C37.118-2005..............................................................38
8.1.3.4  UTC Offset Discrepancies between IEEE1344-1995 and C37.118-2005..............39
8.1.3.5  Modulated vs. Unmodulated (DCLS) Timecode Signals........................................41
8.1.3.6  Selecting An Adequate Timecode Signal................................................................41

8.2  Access Time Considerations...................................................................................................42
8.2.1  PCI Cards........................................................................................................................42

8.2.1.1  PCI Express Limitations..........................................................................................42
8.2.1.2  API Calls available for Meinberg PCI Cards..........................................................43
8.2.1.3  Circumventing PCI Access Times..........................................................................43

8.2.2  Native Serial Port............................................................................................................45
8.2.3  USB Devices...................................................................................................................45
8.2.4  Fiber Optic......................................................................................................................45

8.3  Time Resolution Considerations.............................................................................................45
8.4  Disciplined vs. Undisciplined Oscillator Considerations.......................................................46
8.5  Hardware PPS Considerations................................................................................................47
8.6  Meinberg's Approach to PTP Client PCI Cards.....................................................................47

9  Distributing Reference Time to Computers...................................................................................48
10  Time Synchronization Problems with Virtual Machines.............................................................50

10.1  General Information..............................................................................................................50
10.2  VMWare...............................................................................................................................50

3



10.3  XEN......................................................................................................................................51
10.4  Microsoft Hyper-V...............................................................................................................51

11  Potential RTC Problems on Dual Boot Systems..........................................................................52
12  Time Synchronization Problems Under Windows.......................................................................53

12.1  Timer Tick Interpolation Problems.......................................................................................53
12.2  Latency Problems Affecting the Windows System Time.....................................................53
12.3  Small System Time Adjustments May Be Lost....................................................................54
12.4  Polling Intervals With NTP For Windows...........................................................................55
12.5  Possible Problems in a Windows Active Directory Domain................................................57

4

This document is currently work in progress.
Additional chapters with related topics will be added.



1 Introduction
This paper is intended as a primer or reference for people involved with computer time 
synchronization. It is more a kind of howto rather than a scientific article. There are some chapters 
with basic information to get an overview, but there are also some chapters going into details and 
trying to make clear why sometimes things may not work as expected by people who are not too 
familiar with this kind of stuff.

The contents include a short introduction to date and time scales in general, followed by an 
introduction how computers keep time and how the computer time can be disciplined. This includes 
basic information on commonly used techniques and protocols as well as advantages and limitations 
of individual techniques.

Last but not least this paper explains how hardware time sources can be used to yield a better 
accuracy of the computer system time, and how the achievable accuracy depends on certain 
characteristics of a hardware time source.

1



2 Who Needs Time Synchronization?

Time synchronization is a matter of course everywhere in our daily life.
Here are some examples:

1.   Air Traffic Control 13. Lottery
2.   Research Vessels 14. Traffic Management
3.   Oil Production 15. Operation Coordination
4.   Satellite Communication 16. Event Management
5.   Observatories 17. Wall Clocks
6.   Power Substations 18. Lighting Control
7.   Power Plants 19. Railway Time Table
8.   Toll Charging Systems 20. Radio Broadcasting
9.   Wind Energy Plants 21. Mobile Communication,
10. Public Infrastructure       Call Data Records
11. Production Flow 22. Outside Broadcast Van
12. Banks, Cash Terminals, 
      Stock Exchange,
      Data Centers

23. Emergency

2



3 Local Time Zones and World Time Scales

3.1 Local Time Zones and Civil Time

Everywhere on the planet human beings expect the time of day to be 12 o'clock noon when the sun 
reaches the maximum altitude, so several time zones have been defined around the globe.

Basically there are 24 time zones, each of which differs from the next zone by 1 hour and covers a 
section of the globe which spans about 15 degrees of the geographic longitude. However, since the 
legal local time is determined by each country's own government, the borders of the time zone often 
follow the borders of individual countries rather than exactly one of the globe's meridians. There are 
even a few small regions which define their own time zone differing from the next time zone by 15, 
30, or 45 minutes rather than 1 hour.

Today the legal standard time in each time zone is derived from a common world time, which has 
formerly been called GMT but been replaced by a new definition called UTC. See the next chapters 
for details.

Some countries like the United States or Russia span across several time zones, so the inhabitants of 
these countries are usually aware there are several time zones and take this into account in their 
daily life. On the other hand, there are countries which are completely located inside a single time 
zone, so the inhabitants of these countries are often not aware there are several time zones until they 
get in touch with computer time synchronization, or international business relations.

3.2 Daylight Saving Time

Many countries also switch their legal local time to Daylight Saving Time (DST, also called 
Summer Time) during parts of the year. Whether this happens, and at which date and time DST 
starts or ends is determined by the legislation of each individual country. Some countries follow 
some general rules for DST, e.g. DST starts at a given time on the last Sunday in March and ends at 
a given time on the last Sunday in October year by year, whereas other countries follow irregular 
rules, e.g. Israel, where the beginning of DST depends on the date of a religious holiday in a given 
year, or Morocco, which temporarily switches back from DST to standard time during Ramadan.

Most countries put the clocks forward by 1 hour during the period where DST is in effect. As a 
consequence, the length of a day is 23 hours rather than 24 hours on the day when DST begins, 
since one hour is skipped. Accordingly, the length of a day is 25 hours rather than 24 hours on the 
day when DST ends since the clocks are put backward and thus 1 hour is passed twice. This needs 
to be taken into account e.g. if measurements are made in cyclic intervals which start at the same 
time every day.

3.3 Historical Greenwich Mean Time (GMT)

For historical reasons the zero meridian of the planet Earth has been defined to go through the 
Royal Greenwich Observatory near London, U.K., and the time measured at that observatory has 
been used as the base time scale for all other time zones East and West of Greenwich.

This original GMT time scale defined and used mainly by astronomers, so it was based on 
measurements of the true earth rotation, and a day started a 12:00 noon. In order to adapt to civil 
habits, the beginning of a new GMT day was changed from 12:00 noon to 12:00 midnight in the 

3



beginning of 1925. However, this caused lots of confusion, so in 1928 the new GMT time scale was 
renamed to Universal Time (UT). UT is still bound to the earth rotation, and variants of UT (UT0, 
UT1, and UT2) are still used today by astronomers.

Unfortunately the earth rotation varies over time: it continuously slows down over the long term, 
mostly due to tide effects, and it can temporarily speed up or slow down due to volcanism, earth 
quakes, big floods, etc., so obviously a time scale which is associated to the earth rotation also 
varies over time, and thus the length of a second varies over time. This became unacceptable for 
technical purposes, and thus a new time scale needed to be invented where the length of a second 
does not vary. This new time scale was called Coordinated Universal Time (UTC).

Anyway, the old name GMT is still often used in places where UTC would be more appropriate and 
correct. Especially, GMT is often intermixed with the British civil time which is the same as UTC 
unless daylight saving is in effect.

3.4 Atomic Time Scales and Atomic Clocks

As mentioned in the previous chapter the length of a second derived from GMT or UT is not 
constant and thus not very suitable for technical applications. So in 1967 the International System of 
Units (SI) defined the length of a reference second (SI second) based on a natural constant. It turned 
out the resonance frequency between selected energy levels of specific Cesium atoms is pretty 
stable, so the length of a second was defined as a certain number of periods of this frequency.

Atomic clocks are devices which let some of those Cesium atoms oscillate between those specified 
energy levels and count the number of oscillations in order to determine the length of a second. So 
unlike the name Atomic Clock suggests, these devices have nothing to do with nuclear power plants 
or nuclear bombs, nor do they emit any radioactivity.

More detailed information on Cesium clocks can be found at
http://tycho.usno.navy.mil/cesium.html

In the last couple of years hydrogen masers have been developed which significantly increase the 
accuracy from about 10-13 to 10-15. This means the time derived from this frequency was only off by 
1 second after 1015 seconds of operation, i.e. after more than 31 million years!

Such Cesium clocks, hydrogen masers, and similar devices are nowadays installed in metrology 
institutes and observatories all over the world, building the basis of the modern atomic time scales.

3.5 Atomic Time (TAI) And Coordinated Universal Time (UTC)

In 1972 a new global time scale was defined which is called Coordinated Universal Time (UTC, 
Universal Time, Coordinated). The UTC time scale is based on the SI seconds generated by atomic 
clocks.

Most industrial countries have their national metrology institutes or observatories where they have 
one or more atomic clocks installed. The best of those clocks contribute to a common Atomic Time 
(TAI, Temps Atomique International), weighted depending on the accuracy and stability of each 
individual clock.

The atomic time TAI is a linear time scale which is used as a base for the common world time,UTC, 

4

http://tycho.usno.navy.mil/cesium.html


which differs from TAI by an integral number of leap seconds which have been inserted over the 
last decades. See the next chapter.

As the name Coordinated Universal Time suggests, the measurements and contributions to TAI 
(and thus UTC) are coordinated by the Bureau International de Poids et Mesures (BIPM):
http://www.bipm.org/

All affiliated atomic clocks are compared to each other and steered such that they stay as close as 
possible to the common UTC time, and in fact most of the clocks differ from the global UTC time 
by a few nanoseconds only.

Some popular institutes which operate atomic clocks contributing to UTC are

• The German Physikalisch-Technische Bundesanstalt (PTB, the German national metrology 
institute)
http://www.ptb.de/

• The U.S. Naval Observatory (USNO)
http://www.usno.navy.mil/

• The U.S. National Institute of Standards and Technology (NIST)
http://www.nist.gov/

• The National Physical Laboratory (NPL) in the United Kingdom
http://www.npl.co.uk/

5

http://www.npl.co.uk/
http://www.nist.gov/
http://www.usno.navy.mil/T
http://www.ptb.de/
http://www.bipm.org/


3.6 Leap Seconds

Since TAI (and thus UTC) seconds have a constant length whereas the earth rotation may slightly 
vary over time, leap seconds have been applied to the UTC time scale whenever appropriate to keep 
UTC consistent with the actual earth rotation speed. 

In theory leap seconds can be inserted or deleted, but in practice leap seconds have only been 
inserted over the last decades. The evolution of the earth rotation speed since the introduction of 
UTC, and the leap second which have been inserted since to compensate this can be seen on this 
graph:

The graph above has been copied from this web page:
http://hpiers.obspm.fr/eop-pc/earthor/utc/leapsecond.html

It shows descriptively how the earth rotation has changed over time, and how leap second have 
been inserted to adjust the UTC time scale to the earth rotation.

Historical Information on earth rotation are presented here:
http://www.ucolick.org/~sla/leapsecs/dutc.html#atomic.png

Usually leap seconds are only scheduled for UTC midnight at the last day of June or December, so 
that they occur at the same moment in time world-wide. However, as a consequence this happens at 
different local times depending on the time zone you are in.

Whenever a leap second is added or deleted the last minute of the day has 61 or 59 seconds, and 
thus the minute, the hour, and the whole day is 1 second longer or shorter than usual, which must be 
taken into account by billing systems, etc.

Actually there is an ongoing discussion whether it makes sense to redefine the UTC time scales 
without leap seconds. See:
http://www.futureofutc.org

Leap seconds must not be confused with leap years, where a whole day is inserted to account for 
variations of the length of a year instead of the length of a day.

While leap seconds are used to adopt the time derived from technical TAI seconds to the interval 
the globe requires for a full rotation around its own axis, i.e., a day, leap years are introduced to 
adopt calendar dates to the interval the Earth requires to circle around the sun, i.e., a year.

6

http://www.futureofutc.org/
http://www.ucolick.org/~sla/leapsecs/dutc.html#atomic.png
http://hpiers.obspm.fr/eop-pc/earthor/utc/leapsecond.html


4 How Computers Keep Time

4.1 Basic Concepts

Modern computers usually provide a battery buffered real time clock (RTC) chip on the mainboard 
which keeps the current date and time when the computer is powered off. This RTC chip is often 
also called CMOS clock or hardware clock. Since this chip operates from a battery when the 
computer is powered off the chip is usually driven by a crystal at only a very low frequency in order 
to minimize consumption of battery power.

When the computer is powered on the operating system starts a so-called software clock or kernel 
clock which then continues to keep the current time. The software clock works using one of the 
timer/counter circuits provided by the chipset on the mainboard, which is configured to generate so-
called timer tick interrupts in cyclic intervals. Depending on the operating system type and version, 
the tick interrupt can either be generated by the RTC chip, or by a different timer circuit available 
on the mainboard.

Whenever a timer tick interrupt occurs a certain tick adjustment value is added to a linear time 
which represents e.g. the number of seconds and fractions of a second since a given epoch. That 
linear time can then be converted to a human readable calendar date and time whenever required. 
This so-called software clock is used by most modern operating systems.

Special problems may arise in virtual machines which rely on virtual computer hardware since the 
timer tick interrupt is only emulated and thus timer tick intervals may strongly vary in length. See 
chapter “Time Synchronization Problems with Virtual Machines” for details.

Anyway, the time kept by the software clock can drift apart from the time kept by the RTC as long 
as the computer is up and running. This is why some operating systems write the software time back 
to the RTC chip when the operating system shuts down.

Linux kernels may even have been configured to write the software time back to the RTC in cyclic 
intervals while the system is running. The interval is usually 11 minutes, and thus this feature is 
often referred to as 11-minute-mode, which is used to make sure the RTC is updated even if the 
system is not shut down properly, e.g. if used in embedded devices.

For considerations of potential problems on Multi Boot systems refer to chapter “Potential RTC 
Problems on Dual Boot Systems”.

For the Linux operating system more detailed information can be found at:
The Clock Mini-HOWTO: How Linux Keeps Track of Time [1]
http://tldp.org/HOWTO/Clock-2.html

4.2 Resolution of the System Time

Most Unix-like systems (including Linux, *BSD, Solaris, etc.) provide the system time at least with 
microsecond or even nanosecond resolution. This means applications can read system timestamps 
with that resolution, and thus the timestamps from subsequent reads can be distinguished.

The Windows system time is only incremented in steps of a timer tick interval and thus provides 
only very limited resolution. Up to Windows XP and Windows Server 2003 the timer tick interval 

7

http://tldp.org/HOWTO/Clock-2.html


is about 16 milliseconds only. This means even though the available API calls support a resolution 
of 100 nanosecond steps, an application which reads the system time continuously receives exactly 
the same time stamp during a whole 16 ms timer tick interval, and after the next timer tick the 
returned time steps by the amount of the timer tick interval.

Under Windows Vista and newer the timer tick interval changes down to about 1 millisecond if an 
application is running which sets the Windows multimedia timer to highest resolution.

With Windows 8 a new software interface (API function) has finally been introduces which allows 
applications to read the system time with 0.1 microsecond resolution. However, only applications 
which explicitely use this API call can benefit from this higher resolution.

Some time synchronization software including the reference implementation of NTP and the 
Meinberg driver software package for Windows try to increase the resolution of the legacy 
Windows system time on Windows versions which don't support the new API call with the help of 
an additional timer used to interpolate the time between two timer tick interrupts. This helps to 
discipline the system time more smoothly than without interpolation. However, the interpolated 
system time is not available to other applications using the Windows standard API calls to read the 
system time.

An alternate way to provide Windows applications with high-accuracy, high-resolution time stamps 
is having the applications read the time stamps directly from a PCI card provides high accuracy, 
high resolution time.

If the system time is provided with high resolution then this does not necessarily imply the system 
time also provides microsecond or nanosecond accuracy. However, obviously the reverse 
conclusion is true: If the system time only provides limited resolution then the possible accuracy is 
also limited. This is the main reason why usually the system time of a Unix machine can be 
disciplined more accurately than the system time of a Windows machine.

4.3 Why the Undisciplined Software Clock Drifts

The tick adjustment value used by the software clock has been determined such that the counted 
system time increases exactly if the crystal which drives the counter runs at its nominal frequency. 
In most cases, however, that crystal does not run exactly at its nominal frequency. Instead, each 
crystal has its own “native” frequency which is more or less off its nominal frequency. So the 
amount of time which is added to the system time at each timer tick is a little bit too large or too 
small, and thus causes the system time to drift away more or less slowly over time.

Since the “native” frequency is unique to the individual crystal, even several mainboards of the 
same type have their own “native” clock drift. Some time synchronization programs determine the 
system clock drift during operation, save the determined drift across a reboot, and use the saved 
value as startup value after a reboot, see e.g. the drift file used by the NTP reference 
implementation.

Beside the native frequency offset the frequency of a crystal also varies with the ambient 
temperature, so in addition the clock drift varies with the ambient temperature. The magnitude of 
this frequency variation depends on the quality of the crystal.

8



4.4 Disciplining the System Time

The easiest way to discipline the computer system time is to provide a reference time source which 
is more accurate, and then set the system time in periodic intervals. The disadvantage of this method 
is, however, that the system time still drifts during each interval, and after the next interval a time 
step occurs in the range of the time offset accumulated during the last interval.

In order to avoid this problem modern time synchronization applications like implementations of 
the Network Time Protocol (NTP), the Precision Time Protocol (PTP), and also the time adjust 
service from the Meinberg driver package for Windows don't just set the system time periodically. 
Instead, they also try to determine and compensate the system clock drift to discipline the system 
time smoothly. Modern operating systems usually provide a programming interface which can be 
used by applications to control the system clock drift. How well this works depends strongly on the 
type and version of the operating system.

NTP is mostly used to synchronize the time across a network. The reference implementation of 
NTP which is freely available on the internet can either use an upstream NTP server or a hardware 
reference clock as a reference time source to discipline the system time. Under Windows the 
Meinberg time adjustment service should be used to discipline the system time, and the NTP service 
can be installed to make the disciplined time available on the network.

4.5 Computer UTC vs. Local Time

Modern operating systems keep their system time internally in UTC, and convert the time displayed 
to the user to local time depending on the time zone settings, which also include settings whether 
daylight saving time (DST) is observed, and at which date and time DST begins and ends.

Under Windows there is usually only a single global time zone setting. However, on Unix-like 
systems every user can configure his own preferred time zone, and even single processes can be run 
with individual time zone settings. All those individual local times are derived from the common 
system UTC time, so it makes most sense to discipline the system UTC time only.

The operating system also makes sure that always the correct local time is returned, e.g. one 
millisecond before DST begins the local standard time is returned, and one millisecond after DST 
switchover the correct daylight saving time is returned. This would not be possible if some time 
synchronization software which is run e.g. once per second tried to do this job. See also chapter 
“Why Not Discipline The Computer's Local Time”

In most cases applications which present the time to the user read the current local time from the 
operating system. However, there are also applications which use the current UTC time for 
timestamping. Using UTC time makes it easier to relate events to each other which have been 
recorded in different time zones, and it does not suffer from time steps from DST switchovers.

This is why modern data base applications use UTC time to timestamp transactions. Those data 
base applications can be totally messed up if for example the system UTC time is stepped back so 
that earlier time stamps are assigned to events which happened later.

So even though it is not obvious at the first glance, a correct, and correctly increasing, UTC time is 
most important for modern operating systems and applications. The local time can always be 
tweaked to match the users preferences by simply changing the time zone configuration according 
the requirements.

9



4.6 How to Obtain Current Timezone Information

The decision if and when a local time zone should switch to daylight saving is determined by the 
legislation of each individual country. If the rules are changed by the legislation then the operating 
systems needs to be updated to account for the modified DST rules. See also chapter “Local Time 
Zones and Civil Time”, and chapter “NTP and Local Time”.

Unix-like systems usually come with the so-called Olson timezone database
http://en.wikipedia.org/wiki/Tz_database 
to specify local time zones, while Windows keeps the available timezone rules in a set of registry 
entries. If a timezone specification is changed for a specific country then usually new packages or 
service packs are made available by the OS vendors/distributors which account for the changed 
DST rules.

4.7 Why Not Discipline The Computer's Local Time

Good time synchronization software does not care about the computer's local time. Instead it 
disciplines the computer's UTC time, and the local time which is displayed depends only on the 
configured time zone settings, based on the rules which come with the OS.

This is the way the Network Time Protocol (NTP) and Precision Time Protocol (PTP/IEEE1588) 
work, and this is also how the time adjustment service for Windows from the Meinberg driver 
package for Windows works.

If the computer's local time would be disciplined rather than its UTC time then this might result in 
severe problems which may not be obvious at the first glance.

Time synchronization software usually compares the system time to some reference time in 
specified intervals only. If e.g. the time interval is 10 seconds, and a DST switchover would have to 
occur one millisecond after the last check, then the real DST switchover would occur 10 seconds 
too late, and thus the wrong local time would be returned for 10 seconds, or in general for the length 
of the time interval between two checks.

Even worse things will happen if a given time zone has been specified, or time zone “GMT+0” has 
been specified in the local time configuration, but the user expects to see his true local time rather 
than “GMT+0” anyway. In both cases the system's UTC time is wrong, or will be stepped back and 
forth around the time a DST switchover occurs, if the system's local time rather than its UTC time 
was disciplined.

Even though this might not be visible on the user interface, this may have disastrous consequences 
for applications which rely on proper UTC time, like database applications. See also the previous 
chapter.

So it is most important to discipline the computer's UTC time, and this is why especially the NTP 
network protocol has been designed to deal only with UTC time. Forcing NTP servers to send local 
time rather than UTC results in messed up time on the involved systems, and are considered a 
violation of the NTP protocol specification. See also chapter “NTP and Local Time”.

10

http://en.wikipedia.org/wiki/Tz_database


5 How Do I Know Which Time It Is?
Basically there are different ways to get to know what time it is. Each way has specific advantages 
and maybe disadvantages:

• There's a funny video on Youtube showing how to do it the Italian way:
http://www.youtube.com/watch?v=u9OOjr7odPY ;-)

• Look at a clock which I have in sight
I can look at the clock whenever I want, as often as I want, and know the time immediately
→ Read fast time stamps from a PCI card

• Listen when the church clock bell sounds
Whenever the bell sounds I know it's a full hour
After I have counted the strokes I know what time it was at the beginning
I don't know exactly what time it is in between.
→ Wait until serial time string sent automatically, e.g. on second changeover

• Ask someone else who knows the time
The other person looks at its wrist watch and replies to my query earlier or later
→ Network time protocols (NTP, PTP)
→ Querying slow devices (USB)

For computer time synchronization there are similar aspects to be kept in mind:

• Where do I get the time from? At which accuracy?
→ Radio clock connected to the PC
→ Time server on the network

• Which ways exist to get the time?
→ PCI card: Can get the current time always, immediately
→ Serial: Wait for time string. When sent? Transmission delay?
→ Network: Send query, wait for reply, compensate network delays

• Resolution of the local system time?
→ Depends on operating system
→ Windows: 16 ms (XP) or 1 ms (Vista and newer)
→ Unix/Linux/Windows 8: 1 µs or even better

• Time synchronization software?
→ Which resolution is supported?
→ Is transmission delay compensated?
→ How is system time adjusted? Set periodically? Smoothly?

These questions will be discussed in the next chapters.

11

http://www.youtube.com/watch?v=u9OOjr7odPY


6 Network Time Transfer Protocols
The first public network time transfer protocols have been called time and daytime protocol (see 
chapter 6.4) which were published back in 1983. However, those protocols provided only a limited 
accuracy, and did not try to compensate the network delays. So later in the 1980's the Network 
Time Protocol (NTP) was invented which significantly improved the possible time 
synchronization accuracy. The reference implementation of NTP was designed to run under Unix-
like systems and mainframes.

Under Windows the original way to synchronize times was using dedicated packets of the 
NETBIOS protocol. The NETBIOS protocol was later extended and renamed to NETBEUI 
protocol. However, this kind of time synchronization also had some limitations, so current 
Windows versions also use an NTP (or Simple NTP) implementation provided by the Windows 
Time service (w32time) by default.

The Precision Time Protocol (PTP) has been introduced some years ago in order to improve the 
possible accuracy beyond the level of accuracy provided by NTP. However, this requires special 
hardware support to yield the highest level of accuracy.

All the protocols are usually handled by a daemon or service process which runs in the background 
of the operating system. The next chapters describe some details and characteristics of these 
protocols.

Nowadays many workstations are shipped with a pre-installed NTP client, so Meinberg also offers 
various plug-and-play NTP and PTP time servers called LANTIME, with different reference clock 
options, e.g. built-in GPS or DCF77 PZF receivers. The devices also have a network interface and 
power supply included, are assembled in a standalone case and ready to operate and provide clients 
with accurate time.

6.1 The Network Time Protocol (NTP)

6.1.1 NTP Overview

The NTP protocol has been invented in the 1980's by Dave L. Mills at the University of Delaware. 
The ambition was to achieve the highest possible time synchronization accuracy for computers 
across the network. The protocol and related algorithms have been specified in several RFCs. 

The public domain software package called NTP is the reference implementation of this protocol. 
Since the original implementation NTP has been enhanced and is now widely used around the 
world. The protocol supports an accuracy of time down to nanoseconds. However, the real accuracy 
which can be achieved also depends on the operating system and the network performance.

The current NTP v4 protocol version has being standardized by the IETF, and the basic format of 
the network packets is compatible with earlier NTP versions, so current NTP implementations can 
be used together with older versions, unless specific NTP v4 features are being used. In addition to 
NTP there's also a simplified version called SNTP (Simple Network Time Protocol) which uses the 
same TCP/IP UDP packet structure like NTP but due to the simpler algorithms, it usually provides 
only reduced accuracy and is thus mostly used for simple clients. The NTP package contains a 
background program (daemon or service) which synchronizes the computer's system time to one or 
more external reference time sources which can be either other devices on the network, or a 

12

http://www.meinberg.de/english/info/ntp.htm#rfc
http://www.eecis.udel.edu/~mills
http://www.meinberg.de/english/info/dcf77.htm
http://www.meinberg.de/english/info/gps.htm
http://www.meinberg.de/english/products/lantime.htm


hardware reference time source connected to the computer.

Additionally, the NTP distribution contains programs which can be used to control or monitor the 
time synchronization status, and a complete set of documentation in HTML format.

6.1.2 NTP and Local Time

The decision if and when a local time zone should switch to daylight saving is determined by the 
legislation of each individual country. If the rules are changed by the legislation then the operating 
systems needs to be updated to account for the modified DST rules. See also chapter “Local Time 
Zones and Civil Time”, and chapter “Computer Local Time versus Computer UTC Time”.

The NTP network protocol has been designed to deal only with UTC time. There are no provisions 
to let NTP handle local time offsets, times for DST switchover, etc. Using something different than 
UTC in the NTP protocol is clearly a violation of the NTP protocol specification. For ways how to 
upgrade the local time specifications see also chapter “How to Obtain Current Timezone 
Information”.

Also, forcing NTP servers to send local time rather than UTC results in messed up time on the 
involved systems. NTP programs usually expect UTC time, and they expect the time to increase 
monotonically. Those programs implement filters to measure and compensate the system clock 
drift. If the time suddenly steps because the NTP server starts to send DST instead of standard time 
then the sudden time step would only be accepted after a number of polling cycles, i.e. after several 
minutes. Then the NTP software had to discard all earlier filter values, step the system time, and 
restart from scratch.

Beside the requirement to be able to use the NTP protocol safely across the world's time zones, the 
chapter “Why Not Discipline The Computer's Local Time” provides more reasons why NTP uses 
only UTC time.

6.1.3 Computer Platforms Supported by NTP

NTP's native operating system is UNIX. Today, however, NTP runs under many UNIX-like 
systems, and NTP v4 has also been ported to Windows. It can be used under Windows NT, 
Windows 2000, and newer Windows versions up to Windows Vista, Windows 7 / Windows 8 and 
Windows Server 2008 / 2012.

The standard NTP distribution can not be run underWindows 3.x and Windows 9x/ME because 
there are some kernel features missing which are required for precision time keeping. For Windows 
9x/ME and other platforms which are not supported directly by the NTP package there are some 
NTP or SNTP programs available on the internet. An overview of available programs can be found 
on the NTP support home page.

6.1.4 NTP Naming Conventions: ntp or xntp

Each NTP source distribution contains the NTP daemon itself, plus some utility programs. Earlier 
versions of the NTP distribution and some of the programs included in the package had names 
starting with xntp (e.g. xntpd) while other utilities in the same package had names starting with ntp 
(e.g. ntpq).

13

http://support.ntp.org/bin/view/Main/ExternalTimeRelatedLinks


Beginning with NTP version 4, the naming conventions were changed to be more straightforward, 
so now the name of the NTP distribution itself and the names of all the programs included start with 
ntp (e.g. ntpd, ntpq).

Some Unix-like operating systems use a script to start the NTP daemon at system start-up. 
Sometimes the script still has a name starting with xntp even though the real name of the daemon 
started by the script is ntpd. This is the case, for example, for some versions of SuSE/openSUSE 
Linux. Other commonly used names for the startup script are ntp or ntpd.

6.1.5 The NTP Time Synchronization Hierarchy

The NTP daemon can not only adjust its own computer's system time. Additionally, each daemon 
can be a client or peer for other NTP servers, and act as a server for other NTP daemons at the same 
time: 

• As client it queries the reference time from one or more servers.
• As server it makes its own time available as reference time for other clients.
• As peer it compares its system time to other peers until all the peers finally agree about the 

"true" time to synchchronize to.

These features can be used to set up a hierarchical time synchronization structure. The hierarchical 
levels of the time synchronization structure are called stratum levels. A smaller stratum number 
means a higher level in the hierarchy structure. On top of the hierarchy there is the daemon which 
has the most accurate time and therefore the smallest stratum number. 

By default, a daemon's stratum level is always one level below the level of its reference time 
source. The top level daemon often uses a radio clock as reference time source. By default, radio 
clocks have a stratum number of 0, so a daemon who uses that radio clock as reference time will be 
seen as a stratum 1 time server, which has the highest priority level in the NTP hierarchy. In large 
networks it is a good practice to install one or more stratum 1 time servers which make a reference 
time available to several server computers in each department. Thus the servers in the departments 
become stratum 2 time servers which can be used as reference time source for workstations and 
other network devices of the department.

Unlike in telecom applications where the word stratum is used e.g. to classify oscillators according 
to their absolute accuracy and stability, the term stratum in the NTP context does not indicate a 
certain class of accuracy, it's just an indicator of the hierarchy level.

6.1.6 NTP Built-In Redundancy

Each NTP daemon can be configured to use several independent reference time sources. Each 
reference time source is queried (polled) periodically in certain intervals, and the time sources are 
then classified into groups of time sources which agree about the same time. This allows a group of 
"good" time sources (truechimers in NTP terminology) to overvote a smaller group of "bad" time 
sources (so called falsetickers). The so called system peer is then selected from the group of 
truechimers.

If the time source currently selected as system peer becomes unavailable then a new system peer is 
determined based on this selection algorithm. The stratum level under which a daemon is visible on 
the network corresponds to the current system peer's stratum level, plus 1. 

14



For details on the selection algorithm see:
David L. Mills, Mitigation Rules and the prefer Keyword
http://www.eecis.udel.edu/~mills/ntp/html/prefer.html

For details on the best number of time sources to be used see:
The NTP Support Web, Selecting Offsite NTP Server
http://support.ntp.org/bin/view/Support/SelectingOffsiteNTPServers#Section_5.3.3  .  

6.1.7 The NTP Drift File

The reference implementation of the NTP daemon can be configured to use a driftfile to save the 
computed system clock drift compensation value across reboots. 

6.1.8 NTP Configuration Overview

The NTP daemon reads its configuration from a file named ntp.conf. On UNIX-like systems, this 
file is located in the /etc directory by default. 

On Windows platforms, if a recent NTP version has been installed using the GUI installer from the 
Meinberg NTP download page, the ntp.conf file is located in an etc\ directory below the NTP 
program directory, e.g. in c:\Program Files\NTP\etc. 

Earlier versions of NTP for Windows assumed the ntp.conf file to be located in either %systemroot
% or %systemroot%\system32\drivers\etc, where %systemroot% corresponds to c:\winnt or 
c:\windows in standard installations. 

In most installations the ntp.conf file contains at least one or more lines starting with the keyword 
server. Each of those lines specifies one reference time source which can be either another 
computer on the network, or a hardware reference time source connected to or installed inside the 
local computer. 

Reference time sources are specified using IP addresses, or host names which can be resolved by a 
DNS name service. If an IP address represents a real node on the network then the NTP daemon 
assumes another NTP daemon running on a computer with that address. Additionally, NTP uses 
some pseudo IP addresses to specify special reference time sources. 

For example, NTP uses a pseudo IP address 127.127.8.n to access a Meinberg radio clock 
installed at the local computer via the parse driver. To access its own system clock, also called the 
local clock, NTP uses the pseudo IP address 127.127.1.0. This IP address must not be mixed up 
with 127.0.0.1, which is the IP of the localhost, i.e. the computer's loopback network interface.

Attention: Some older versions of NTP have problems with DNS name resolution under Windows 
if support for MD5 authentication has been compiled in. In this case all TCP/IP addresses in the 
ntp.conf file must be entered in dotted decimal notation (e.g. 172.16.1.1) rather than DNS name 
like host.domain.com.

15

http://www.meinberg.de/english/sw/ntp.htm#ntp_nt_stable
http://support.ntp.org/bin/view/Support/SelectingOffsiteNTPServers#Section_5.3.3.
http://support.ntp.org/bin/view/Support/SelectingOffsiteNTPServers#Section_5.3.3
http://www.eecis.udel.edu/~mills/ntp/html/prefer.html


6.1.9 NTP Configuration with Upstream NTP Servers

NTP configuration for computers without hardware reference clock is quite simple. For each 
computer which is to be used as reference time source, a line must be added to the file ntp.conf. 
Additionally, the computer's local clock can be configured to be used by the NTP service if none of 
the other time servers on the network can be reached. Since the time servers on the network shall be 
preferred, the local clock's stratum should be forced to a high number: 

  server 127.127.1.0            # local clock
  fudge 127.127.1.0 stratum 12  # not disciplined

  server ntp_server_1 iburst
  server ntp_server_2 iburst
  server ...

where ntp_server_1, ntp_server_2, etc. must be the real host names or IP addresses of existing NTP 
servers.

The iburst keyword which is supported by recent versions of the NTP implementation should be 
added to speed up initial synchronization. See chapter “Getting Started with NTP“ for details.

6.1.10 NTP's Local Clock Driver

Additionally, there can be an entry for the local clock which can be used as a fallback resource if no 
other time source is available. Since the local clock is not very accurate, it should be fudged to a 
low stratum:

  server 127.127.1.0            # local clock
  fudge 127.127.1.0 stratum 12

6.1.11 NTP Configuration via DHCP

In order to be able to configure a large number of NTP client machines in an easy way some DHCP 
client programs (e.g. the ISC's dhcpcd on Unix-like systems) can query the IP addresses of one or 
more upstream NTP servers via the DHCP protocol and possibly overwrite an existing ntp.conf file 
with a new configuration.

This feature can significantly simplify administrative efforts in large networks, since the 
administrator only has to specify one or more NTP server adresses on the DHCP server.

On the other hand, this can strongly confuse a user who tries to set up a machine with an individual 
NTP configuration which is then occasionally overwritten by the settings received via DHCP.

NTP server information is only sent by the DHCP server if a DHCP client requests this type of 
information, and the DHCP client program needs to evaluate this information and update the NTP 
configuration accordingly, so this is outside the scope of the NTP programs, and  the way to enable 
or disable this feature for the DHCP client depends on the operating system type and version, not on 
NTP. Also, this method is not appropriate to configure an NTP daemon which shall query the time 
from a hardware reference time source instead of an upstream NTP server.

16



6.1.12 NTP Access Restrictions

See:
http://support.ntp.org/bin/view/Support/AccessRestrictions

Please note the exact behaviour of given access restriction configuration parameters may depend on 
the exact version of the NTP daemon.

6.1.13 NTP with Meinberg Refclocks on Unix-like Systems

The NTP package contains several drivers which can be used to let the NTP daemon read the 
reference time from various hardware reference time sources (refclocks). On Unix-like systems the 
parse driver can be used to read time strings in various formats from external refclocks connected 
via one of the computer's serial ports.

If the NTP daemon shall use a PCI card or USB device as reference time source then usually an 
additional driver package is required. Meinberg provides a driver package which can be installed to 
use Meinberg PCI cards or USB devices with the NTP daemon under Linux. The driver package 
has originally been used with the parse driver, but there's also a development version of the driver 
available which can alternatively be used with the shared memory (SHM) driver provided by the 
NTP package.

The following chapters explain how to set up these configurations, and discuss the pros and cons of 
the different methods.

6.1.13.1 Using Meinberg Refclocks with NTP's Parse Driver

On UNIX-like systems the parse driver (type 8) is used to read the time from reference clocks 
manufactured by Meinberg and connected via a serial port. The parse driver is part of the NTP 
package, but must explicitely be activated when the NTP package is compiled. This is usually done 
by the vendor or distributor of the operating system, so most Unix-like operating systems come with 
a precompiled NTP package where the parse driver has been compiled in. However, e.g. some NTP 
packages shipped with older Solaris versions have been built without the parse driver.

If the NTP package installed on a system has been compiled without the parse driver but is to be 
used with a hardware reference time source then the NTP package needs to be recompiled with the 
appropriate option enabled. See chapter “Getting started with NTP and Troubleshooting“ for 
details how to find out if the parse driver has been enabled with a running NTP daemon.

The configuration steps described below for the parse driver must be done by a user with sufficient 
rights on the system, e.g. user root. The parse driver accesses radio clocks via symbolic links 
/dev/refclock-n, where n is an index number in the range 0 through 3 since the parse driver can 
handle up to four reference clocks in parallel.

Each symbolic link must point to a physical device representing an existing hardware reference time 
source. In most cases the physical device is a serial port at which a radio clock has been connected 
externally.

Each of the reference clocks must also be specified in the ntp.conf file using a server line with the 
pseudo IP address 127.127.8.n, where n must correspond to the index numbers used with the 
symbolic device names /dev/refclock-n mentioned above.

17

http://support.ntp.org/bin/view/Support/AccessRestrictions


The pseudo IP address must be followed by a mode m parameter which specifies the type of radio 
clock represented by the device. The table below lists mode values which can be used with 
Meinberg devices connected via a serial port:

Mode Number Device / String Format / Oscillator Quality Trust Time

mode 0 Meinberg PZF clock with TCXO 12 hours

mode 1 Meinberg PZF clock with OCXO 4 days

mode 2 Meinberg Standard Time String with 9600, 7E2 30 minutes

mode 7 Meinberg GPS with OCXO, 19200, 8N1 4 days

Originally the mode number was also used to specify the trust time for the hardware clock, 
depending on the quality of the oscillator provided by the hardware clock. However, with current 
versions of the NTP implementation the trust time can be specified in the ntp.conf file. See below.

So nowadays in most cases mode 2 is used for all Meinberg PCI and USB devices, and serial 
devices which send the Meinberg Standard time string at 9600, 7E2, and mode 7 is used for all 
devices which send the Meinberg Standard time string or the so-called Uni Erlangen time string at 
19200, 8N1.

For example, if a single radio clock is connected to the serial port /dev/ttyS0 then a symbolic link 
for the clock must be set up using the command 

  ln -s /dev/ttyS0 /dev/refclock-0

In the next step the file ntp.conf must be edited to configure the NTP daemon and tell it which 
reference clocks to use. The file should include a server line for the refclock-0 device created 
above. If the radio clock sends the Meinberg standard time string at 9600 baud and framing 7E2 
then, as can be seen from the table above, the mode for refclock-0 must be set to 2. Also, if plug-in 
card is used under Linux then mode 2 must always be used: 

  server 127.127.8.0 mode 2     # standard time string with 9600, 7E2

6.1.13.2 The Parse Driver's Trust Time Parameter

If the device is synchronized (mbgstatus Status info: Clock is synchronized) then the time from the 
card is accepted by ntpd.

If ntpd finds the card is not synchronized then the behaviour depends on an additional condition:

• If the card reports "not synchronized" when ntpd is starting then ntpd refuses to accept the 
time from the card until the card's status changes to "synchronized".

• If ntpd has been running, seen the card synchronized before, but then the card loses sync, 
then the daemon keeps on accepting the card for a certain trust time. When the trust time20 
expires and the card is still not synchronized again then the NTP daemon stops accepting the 
time from the card.

18



• Please note also that there may be security tools like AppArmor or SELinux installed which 
prevent ntpd from accessing the device, unless those tools are explicitely configured to grant 
access to the card to ntpd.

6.1.13.3 External Meinberg Refclocks under Unix

6.1.13.4 Meinberg PCI and USB devices under Linux

A Linux driver for Meinberg PC plug-in cards and USB devices is available on the Meinberg 
software download page. This driver neither supports devices connected via a serial port, nor is it 
required to use devices connected via serial ports with the NTP daemon.

The Meinberg driver package for Linux enables the NTP daemon to use Meinberg PCI cards or 
USB devices as a reference time source used to synchronize the Linux system time. Additionally 
the package contains programs which allow monitoring of the device status, e.g. whether the device 
is synchronized to its incoming time signal, or not, and modifying specific device configuration 
parameters, e.g. the IRIG frame format for IRIG receivers.

The Meinberg driver package for Linux contains programs which can be used to monitor the device 
status, e.g. whether the device is synchronized to its incoming time signal, or not, and to  modify 
specific device configuration parameters, e.g. the IRIG frame format of IRIG receivers. However, it 
also lets the NTP daemon use Meinberg PCI cards or USB devices as a reference time source used 
to synchronize the Linux system time.

The original approach is to let the kernel module from the driver package emulate a serial interface 
as expected by NTP's parse driver, and thus allow the parse driver to read the reference time from 
PCI or USB devices rather than via a real serial port. However, there are some drawbacks with this 
method, see below, so current development versions of the driver package support a different 
approach using the shared memor driver (SHM, type 8) supported by the NTP daemon.

If a recent version of the driver package is used then up to 4 devices can be used with NTP, and the 
required /dev/refclock-* links are by default created automatically by the Linux udev system. In 
older versions of the driver package (before v3.0.0) the link had to be created manually, and the 
device node to be used for the refclock link was named /dev/mbgntp. If in doubt please see the 
README file which comes with the driver package.

Be sure an entry for refclock-<n> is included in the ntp.conf file which is usually located in the /etc 
directory. The lines should look like:

  server 127.127.8.<n> mode 2             # mode 2 for all Meinberg PCI cards
  fudge 127.127.8.<n> time1 0.0           # no systematic delay
  fudge 127.127.8.<n> refid GPSi          # informational, dep. on card type
  fudge 127.127.8.<n> flag1 1 time2 7200  # optionally, set trust time

with <n> matching the index number used for the symbolic link and mode 2 telling the NTP 
daemon to use the data format of the Meinberg standard time string.

19

http://www.meinberg.de/english/sw/index.htm#linux
http://www.meinberg.de/english/sw/index.htm#linux


The fudge lines setup some NTP parameters for this clock. The time1 parameter is a build-in 
compensation of a constant time delay which should be set to 0 for the plug-in devices.

The refid parameter is a string of maximum 4 characters which is displayed for example in the 
output of the ntpq command. We propose to set refid depending on the card type, for example:

  GPS card      refid GPSi
  DCF77 card    refid DCFi
  TCR card      refid TCRi
  PTP card      refid PTPi

The fudge command "flag1 1 time2 7200" can be used to set the so called trust time interval for the 
card. The trust time is a time interval for which the card is still accepted as reference time source if 
it has been synchronized but then starts freewheeling, e.g. because the antenna has been 
disconnected.

Usually the oscillator on the card is much better than the cheap crystal on the PC's mainboard, so if 
the oscillator has been disciplined before it makes sense to keep on using the card as time source for 
a while even if it starts freewheeling, instead of discarding the time source with the good oscillator 
immediately and relying on undisciplined system time.

If the trust time interval is not explicitely configured using the fudge command then the default trust 
time of 30 minutes is used. In the example above the trust time is set to 2 hours (7200 seconds).

6.1.13.5 Using Meinberg PCI and USB devices with NTP's SHM driver

6.1.13.6 Accuracy Considerations SHM versus Parse Driver

6.1.14 NTP with Meinberg Devices under Windows

On Windows platforms, NTP does not currently support most external reference clocks directly. 
Instead, the Meinberg driver can be used together with most internal and external Meinberg radio 
clocks to discipline the Windows system time. The NTP service can then be used to make the 
disciplined Windows system time available to NTP clients on the network. 

If NTP is installed using the GUI installer from the Meinberg NTP download page and the setup 
program detects the Meinberg driver package which has already been installed before then the NTP 
installer suggests to create an appropriate NTP configuration labelled "Follow Meinberg Time 
Service".

This configuration should include the following lines: 

  server 127.127.1.0            # local clock
  fudge 127.127.1.0 stratum 0   # disciplined by radio clock

Since in this case the Windows system time is disciplined by a radio clock, Local Clock's stratum 
should be forced to 0. The NTP server is then visible as stratum 1 server on the network. 

20

http://www.meinberg.de/english/sw/ntp.htm#ntp_nt_stable
http://www.meinberg.de/english/sw/index.htm#win


For this special mode of operation no driftfile should be specified, and if a ntp.drift file already 
exists on the machine, it should be deleted. Otherwise the NTP service might try to correct the 
system clock drift, thus working against the radio clock driver, resulting in a poor time 
synchronization quality.

6.1.15 NTP Broadcast Mode

The NTP reference implementation does not use broadcasting of NTP packets by default. Usually 
clients send request packets to a server, and the server sends a reply packet. This makes it possible 
for the client to estimate and thus compensate the network delay for each individual packet 
exchange. See also chapter “Network Latency Compensation by the NTP Protocol”.

In broadcast mode there is a one-way network propagation delay which can not be estimated by the 
client, so the resulting accuracy is worse than with a client/server configuration. 

If NTP broadcasts ought to be enabled anyway then one broadcast directive has to be added to the 
ntp.conf file for each subnet which is to receive NTP broadcast packets. e.g.:

broadcast 172.16.255.255

if the broadcast address is 172.16.255.255 according to the current network settings.

NTP cients which are to receive NTP broadcast packets also need to be explicitely configured as 
broadcast clients by adding the folowing directive to the ntp.conf file:

broadcastclient

Please note authentication should be used for broadcast mode in order to prevent broadcast clients 
from accepting NTP broadcasts from any node on the network. Otherwise clients might accept 
broadcast packets from any device on the network which sends NTP broadcasts intentionally or 
unintentionally.

6.1.16 NTP Multicast Mode

6.1.17 Using Hardware PPS Signals with NTP

6.1.18 Getting Started with NTP and Troubleshooting

Basically the NTP service can work both as server or client. If a Meinberg PCI card or external 
reference clock has been installed on a computer then this computer can be configured as a time 
server which makes its accurate time available on the network.

The way to configure the NTP program to use the card as reference time source is a little bit 
different e.g. for Windows and Linux, (see chapters “NTP with Meinberg Refclocks under Unix-like  
Systems”, and “NTP with Meinberg Devices under Windows”) but beside this the basic way it works 
is identical.

21



6.1.18.1 Don't Change the System Time While NTP Is Running

NTP has not been designed to correct sudden time steps immediately. It has a filter where the 
results of several queries to the NTP server(s) are evaluated, "spikes" due to queued network 
packets are sorted out, etc. The filter doesn't only compute the current time offset, it also determines 
how fast the system time drifts away from the real time, so that the drift can be compensated. Once 
the filter has been filled NTP starts to adjust the system time smoothly to compensate the time 
offset and drift determined by the filter.

NTP expects the system time to run monotonically, so it can do its work. The system time should 
never be changed manually while NTP is running. If this happens then the filtered time offset 
computed by NTP suddenly steps, and NTP refuses to follow this time step (the changed time 
offset) immediately. Also, the computation of the system clock drift by the filter is totally messed 
up in this case. NTP accepts the new time offset only if it persists for several polling cycles, and 
only if it is not too large. This can take up to more than 15 minutes. Then it sets the system time, 
discards all filter data and restarts polling/filtering from scratch.

If the system time is changed manually by more than about 1000 seconds while NTP is running 
then NTP will even abort itself with a log message saying something like: "The system time has 
been changed significantly. This can only have been done by the administrator, who should know 
what he's doing, so I'm giving up."

To check how NTP disciplines the system time the system time should be changed before NTP has 
been started, and NTP should be started thereafter. Running "ntpq -p" periodically in a command 
line window should show how the reported time offset (in milliseconds) decreases over time until it 
stays at some minimum. Since the system time is disciplined continuously the offset should stay 
around this minimum and not increase again. NTP can generate some statistics files which can be 
evaluated to check the synchronization performance over time.

6.1.18.2 Time Sources Need to Be Synchronized

When the NTP daemon (ntpd) receives the time from a reference time source then it also checks 
whether that reference time source is synchronized, or not. If the reference time source is not 
synchronized then it is not accepted by the NTP daemon. If the NTP daemon does not have any 
reference time source which claims to be synchronized then it does not start to discipline the system 
time.

When ntpd is running then you can use the command "ntpq -p" to to check the status of the NTP 
service on the local or on a remote machine to see whether ntpd accepts the configured time source, 
e.g.:

# ntpq -p
     remote       refid   st t when poll reach   delay   offset  jitter
=======================================================================
*GENERIC(0)      .GPSi.    0 l   18   64  377    0.000   -0.004   0.005

In the example above the reach column reads 377 which means the last 8 queries to read the time 
from the ref clock have been successful. If the refclock can not be accessed or the card is not 
synchronized then the reach value may stay at or go back to 0.

You can run the command "ntpq -p" in a command line window to check the status of the NTP 
service on the local or a remote machine.

22



In the examples below ip.addr.of.server is the server's IP address or hostname, and ip.addr.of.client 
is the client's IP address or hostname:

6.1.18.3 Check if the NTP server claims to be synchronized

On the NTP server machine run "ntpq -p", maybe repeatedly, and check the output:

ntpq -p
     remote        refid   st t when poll reach   delay   offset  jitter
========================================================================
*LOCAL(0)          .LCL0.   0 l   14   64  377    0.000    0.000   0.002

If the output looks like above, i.e. there's a '*' at the beginning of the line, then the NTP service is 
synchronized to its own system time (the "local clock") which is served to the network, and NTP 
clients should accept this server as reference time source.

However, as long as there is no '*' as in the example below then the clients won't accept the server:

ntpq -p
     remote        refid   st t when poll reach   delay   offset  jitter
========================================================================
 LOCAL(0)          .LCL0.   0 l   14   64  003    0.000    0.000   0.002

This may happen during a few minutes after the NTP service has started. In the example above the 
"reach" column is 003, which indicates the service has just been started a moment ago.

6.1.18.4 Check if the client synchronizes to the server

The NTP service on the client machine should have been configured to query the time from the 
NTP server. Run the command in a command line window on the client:

ntpq -p ip.addr.of.client
     remote        refid   st t when poll reach   delay   offset  jitter
========================================================================
*ip.addr.of.server .LCL0.   1 u    9   64  377    0.227   -0.659   0.402

This means the NTP service on client ip.addr.of.client is synchronized to ip.addr.of.server, which in 
turn is synchronized to its local clock. If there is no '*' at the beginning of the line, and the "reach" 
column is "000" then the client is unable to or does not synchronize to the server.

This may be the case if

• the server does not claim to be synchronized

• the client's request network packets don't arrive at the server, or the server's reply packets 
don't arrive at the client, which may be a firewall issue, if UDP port 123 is blocked for 
incoming or outgoing packets on the client or server.

23



6.1.18.5 If the client does not synchronize to the server, check if the NTP packet 
exchange works correctly.

The ntpdate program which is part of the NTP package can be used to make sure there is no firewall 
between the client and the server which blocks NTP packets.

The ntpdate program can be run in a command line window on the client. By default the program 
sends 4 requests to the NTP server specified on the command line (ip.addr.of.server in the example 
below), and thus expects 4 replies. The -d parameter lets the program print some details:

ntpdate -d ip.addr.of.server
 7 Sep 10:51:58 ntpdate[29435]: ntpdate 4.2.0a@1.1190-r Sat Mar 19
19:20:11 UTC 2005 (1)
Looking for host ip.addr.of.server and service ntp
host found : ip.addr.of.server
transmit(ip.addr.of.server)
transmit(ip.addr.of.server)
transmit(ip.addr.of.server)
transmit(ip.addr.of.server)
transmit(ip.addr.of.server)
ip.addr.of.server: Server dropped: no data
server ip.addr.of.server, port 123
stratum 0, precision 0, leap 00, trust 000
refid [ip.addr.of.server], delay 0.00000, dispersion 64.00000
transmitted 4, in filter 4
reference time:    00000000.00000000  Thu, Feb  7 2036  7:28:16.000
originate timestamp: 00000000.00000000  Thu, Feb  7 2036  7:28:16.000
transmit timestamp:  d0307bb1.f33b7521  Tue, Sep  7 2010 10:52:01.950
filter delay:  0.00000  0.00000  0.00000  0.00000
         0.00000  0.00000  0.00000  0.00000
filter offset: 0.000000 0.000000 0.000000 0.000000
         0.000000 0.000000 0.000000 0.000000
delay 0.00000, dispersion 64.00000
offset 0.000000

 7 Sep 10:52:02 ntpdate[29435]: no server suitable for synchronization found

In the example above there are transmit lines but no receive lines, which means the client does not 
receive any replies. Since there are no replies the output says: "Server dropped: no data", and at the 
end: "no server suitable for synchronization found".

If no replies are received then there may be a firewall on the client or on the server which blocks the 
request and/or reply packets, the NTP server could be down, or the NTP program on the server may 
not be running.

In the example below there are 4 transmit lines for the request packets followed by receive lines 
indicating that replies are being received:

ntpdate -d ip.addr.of.server
 7 Sep 10:50:51 ntpdate[29417]: ntpdate 4.2.0a@1.1190-r Sat Mar 19
19:20:11 UTC 2005 (1)
Looking for host ip.addr.of.server and service ntp
host found : ip.addr.of.server
transmit(ip.addr.of.server)
receive(ip.addr.of.server)
transmit(ip.addr.of.server)
receive(ip.addr.of.server)
transmit(ip.addr.of.server)

24

mailto:4.2.0a@1.1190-r
mailto:4.2.0a@1.1190-r


receive(ip.addr.of.server)
transmit(ip.addr.of.server)
receive(ip.addr.of.server)
transmit()
server ip.addr.of.server, port 123
stratum 1, precision -19, leap 00, trust 000
refid [LCL], delay 0.02582, dispersion 0.00069
transmitted 4, in filter 4
reference time:    d0307b60.b14a9302  Tue, Sep  7 2010 10:50:40.692
originate timestamp: d0307b6b.45f17a9d  Tue, Sep  7 2010 10:50:51.273
transmit timestamp:  d0307b6b.4633482b  Tue, Sep  7 2010 10:50:51.274
filter delay:  0.02582  0.02588  0.03105  0.02864
         0.00000  0.00000  0.00000  0.00000
filter offset: -0.00113 -0.00119 -0.00378 -0.00256
         0.000000 0.000000 0.000000 0.000000
delay 0.02582, dispersion 0.00069
offset -0.001136

The replies are also checked to see if the server would be accepted as time source, and if everything 
is OK the estimated current time offset between the server and the client is displayed, which is 
-1.136 milliseconds in the example above.

In this case there NTP client service should be able to synchronize to the upstream NTP server 
without problems.

There may also be a case where reply packets from the NTP server are received but the ntpdate 
program says anyway "no server suitable for synchronization found".

In this case the packet exchange works correctly, but the NTP server may not claim to be 
synchronized, in which case it is not accepted by the client. See chapter "Checking the NTP status"  
above.

6.1.19 Using NTP in a Windows Active Directory Domain

If you have a Windows Active Directory domain installed then the Windows time service 
(w32time) running on the domain controller (PDC) marks that PDC as authoritative time source for 
the domain, so all the domain members autodetect the PDC as authoritative time source and 
synchronize their time to the PDC automatically.

If you would replace the w32time service on the PDC by the NTP program then the PDC would not 
be detected automatically as authoritative time source anymore, and thus the domain members be 
able to synchronize their time automatically anymore.

So you better let the w32time service do its work on the PDC and set up a different PC or server as 
time server. Simply install the card, driver, and NTP package as described above on that PC, and 
then let the “Internet time server" configured on the PDC point to that special PC. 

6.1.20 Building NTP from Sources

25



6.2 The Precision Time Protocol (PTP/IEEE1588)

6.3 RADclock Daemon

Keypoints:

•Invented by Julien Ridoux
http://www.cubinlab.ee.unimelb.edu.au/radclock

•“Feed-Forward” approach

•Uses NTP network packets

•Easier to be used in virtualized systems

•FreeBSD kernel support since 5.3

6.4 The TIME and DAYTIME Protocols

6.5 Time Synchronization using NetBIOS/NETBEUI

6.6 General Network Time Transfer Aspects

Early network time protocols transferred the time only with limited resolution, e.g. to the second, 
and didn't try to figure out how long a packet had been travelling on the network. As a result the 
network delay could not be determined, and thus could not be compensated, which resulted in a 
time offset error on the client.

The NTP protocol was the first attempt to determine the network latency and thus increase the 
possible accuracy for the client which queries the time from a server. It uses four time stamps to 
achieve this:

• t1: Client sends request packet to server

• t2: Server receives request packet from client

• t3: Server sends reply packet to client

• t4: Client receives reply packet from server

So this yields four timestamps from one packet exchange, but 2 of these timestamps refer to the 
time on the client, while the other 2 timestamps refer to the reference time on the server.

So the client can use a simple algorithm to compute from these four timestamps:

26

http://www.cubinlab.ee.unimelb.edu.au/radclock


• What's the offset between server time and client time?

• How long did the request and reply packet travel on the network?

This kind of computation works fine as long as the network packet propagation delay is the same 
for both directions, to the server and back to the client. However, the network delay depends on 
several conditions, so on real networks, it is not constant. In fact the packet delay may vary for each 
packet exchange. This means filtering is required to compute the mean delay and filter out spikes.

At the server side a request packet is timestamped when it comes in from a client, and another 
timestamp is added after the request has been processed, i.e. when the reply packet is sent back to 
the client. This is pretty easy.

Only the client has all the 4 timestamps available after a packet exchange, so only the client can 
determine the time offset and network delay, and try to filter out spikes in the network delay.

As a consequence, the accuracy achievable on a client does not only depend on the accuracy of the 
server, it depends strongly on the implementation of the client software.

So when talking about NTP or PTP we need to distinguish between the protocol, i.e. the format of 
the network packets, and the implementation running on the client which evaluates the received 
packets.

6.7 Latencies due to Network Packet Transfers

If the time difference between two computers is to be determined across the network then the first 
step is to send a network packet with the current time from one computer to the other computer. 
Unfortunately there are a number of delays when a packet is sent across the network:

1. The sending program picks up a time stamp and puts it into a network packet.

2. The network packet is then passed to the network protocol stack where it is passed down 
from the sending user space application to the network drivers which partially run in kernel 
space, where it finally ends up in a send queue. This introduces a delay which depends on 
the CPU power and the system load (interrupt requests).

3. After the packet has been sent by the transmitting program, but before the packet actually 
goes onto the wire, the transmitting process or drivers may occasionally be preempted in a 
multitasking system. This means other processes may run for a certain time interval before 
the packet processing continues and the packet goes out to the network. The time interval 
where the transmitting process is waiting to continue can be huge compared to other 
latencies.

4. The network driver waits until the network wire is unused and starts to transmit the packet. 
If there's a collision on the wire then transmission is aborted and retried after a unknown, 
random delay.

5. Once the packet is on the wire the propagation delay is pretty constant, depending on the 
length of the wire. If there's a network hub between the sender and the receiver then this also 

27



introduces an additional delay, which is pretty constant, though. If there's a router or switch 
between the two nodes then the packet may be queued for an undetermined amount of time, 
which also results in an unknown delay.

6. If the packet arrives at its destination then the network driver generates an interrupt request 
to let the packet be fetched by the protocol drivers. It also takes an unknown amount of time 
until this is done, depending on the CPU power, whether there are higher-prioritized 
interrupts just being handled, etc.

7. Current Gigabit NICs support a feature called interrupt coalescing. This means the card 
does not generate an interrupt request for every single received packet. Instead, several 
packets can be queued on the card. An interrupt request is only generated after several 
packets have already been received, so the NIC driver can retrieve several packets from the 
queue at once. This feature increase the maximum throughput for a network card, but it is 
bad for timing applications since it inserts additional, unknown delays.
See also: http://www.google.com/search?q=interrupt+coalescing

8. Finally the packet is moved up the protocol stack, moved from kernel space back to user 
space, and passed to the application which then takes a time stamp of its own system time in 
order to compute the difference to the time stamp from the incoming packet.

9. After the packet has come in from the wire, but before it actually arrives at the waiting 
application which takes a receive timestamp, the waiting application or the protocol drivers 
may occasionally be preempted in a multitasking system. This is similar to preemption at the 
transmitting side and causes similar latencies.

The application which receives the packet can compute the time difference between the time stamp 
in the received packet and its own current time when the packet has been received. However, there's 
a bunch of unknown transmission delays and latencies, and unless there are additional techniques 
the receiving application has no chance to distinguish which amount of the computed time 
difference is due to the transmission delays, and which amount is the real time offset between both 
machines.

6.8 Network Latency Compensation by the NTP Protocol

The Network Time Protocol (NTP) tries to determine the network delay by sending pairs of 
request/reply packets. This means a NTP client sends a packet to the NTP server and the NTP 
server sends a reply back to the client. In NTP terminology this is called polling. Each polling event 
yields four time stamps:

• the time of the client when the request packet is transmitted
• the time of the server when the request packet is received
• the time of the server when the reply packet is transmitted
• the time of the client when the reply packet is received

After the client has received the reply packet it can evaluate the four time stamps to compute the 
overall turnaround time. The client then assumes the one way delay is half of the turnaround time, 
so the remainder of the computed time difference mentioned above must be the time difference 
between both computers.

This works well if the packet delays for the request packet and the reply packet are similar. 

28

http://www.google.com/search?q=interrupt+coalescing


However, there are cases where the request packet is delayed and the reply packet is not, or vice-
versa, which results in an asymmetry of the propagation delays. The NTP client evaluates data from 
several sequential polling cycles using statistical methods, tries to detect such asymmetries and 
discards the timestamps from such packets as outliers.

Also, asymmetric network connections like ADSL lines introduce a systematic asymmetry for the 
propagation delays due to the different transmission speeds in both directions. Such systematic 
delays can not be determined by the NTP protocol and thus cause a systematic time offset on the 
client.

Anyway, in most cases the statistical methods to evaluate the polling results in client/server mode 
yield quite good results without requiring special network cards or switches. However, since many 
latencies are unpredictable you can not guarantee a certain accuracy.

NTP can also be configured to work in broadcast mode, i.e. the NTP server sends broadcast 
packets in periodic intervals. These packets can be received and evaluated by all NTP clients which 
have been configured accordingly.

The problem with this setup is that the network delay is not determined, or it is only determined 
once when the client starts to receive broadcasts. If e.g. the network route changes and thus the 
network delay varies this is not detected by the clients, and thus the network delay is not 
compensated correctly.

So NTP broadcast mode can not yield an accuracy better than the standard client/server mode. In 
most cases broadcast accuracy is significantly worse. On the other hand, if a huge number of clients 
shall be synchronized and the accuracy is sufficient, using broadcast mode can be a good option.

6.9 Network Latency Compensation by the PTP/IEEE1588 Protocol

The PTP protocol has been developed many years after the NTP protocol, so it supports an 
enhanced way to measure network latencies. In the chapters above we have seen that the variable 
network latencies are due to the execution time in the transmitting or receiving node. On the other 
hand, the pure cable delays depend only on the cable length, but do not vary over time.

In order to compensate the receive delay (i.e. when a packet comes in from the wire until it arrives 
at the application) packets can be time stamped when they come in from the wire. This is done by a 
time stamp unit (TSU) which includes a pattern matcher which has to identify incoming PTP 
packets in the bit stream from the wire, and take a time stamp if such a packet is detected. Both the 
network card driver and the application have to provide a way (an API call) to let the application 
retrieve that time stamp from the NIC driver and assign it to the associated network packet. This 
way the application can compute the difference between the time it has received the packet and the 
time the packet has arrived from the wire, and account for that delay.

Obviously the same has to be done for outgoing packets, i.e. determine the time interval from when 
the packet is sent by the application until it really goes onto the wire. The calculated delay has to be 
passed to the receiver which has to account for that delay. Unfortunately the time stamp can only be 
taken when the packet goes out onto the wire, so when the time stamp is available the packet has 
already been sent. The PTP protocol accounts for this situation by sending a so-called follow-up 
packet which contains the time stamp of the previous packet. The receiver then gets the original 
packet which is time-stamped when coming in, plus the follow-up packet which contains the 
transmission delay and can thus account for both the delays. Using a point-to-point connection 

29



between the transmitting and the receiving node you can yield an accuracy down to a couple of 
nanoseconds by hardware time stamping.

However, there's still a last delay which is not yet known by our server and client. This is the 
propagation delay across intermediate nodes like switches and routers. For example, if a switch 
receives an incoming packet at one port, and the outgoing port is just be used by another packet 
then the incoming packet is queued internally in a FIFO. This can take up to several tens of 
milliseconds (!), depending on the type of switch, the network load and the queue depth. The 
problem is that neither the transmitting nor the receiving node can determine whether a packet has 
been passed on directly, or has been queued, and for how long it has been queued.

So even if both endpoints provide a way for hardware time stamping, a single standard switch 
between them can screw up the accuracy. The only way to avoid this are either to use "dumb" hubs 
which just duplicate the packets without queuing them, or to use special switches which are aware 
of PTP packets and handle them in a special way.

The PTP protocol defines a special "transparent" or "boundary” clock which can be implemented in 
switches or routers in order to handle the PTP packets in a special way which compensates the 
switch's delays.

The statements above also explain why it is nearly impossible to get full accuracy with PTP over a 
wide area network (WAN): The network nodes between two locations are usually owned by a 
service provider, and the customer does not even know which route the network packets take from 
one location to the next, nor does he know which devices are passed along that route.

6.10 Comparison: NTP versus PTP/IEEE1588

The main difference between NTP and PTP is that the statistics implemented by the NTP 
algorithms yield quite good results even over WAN connections, without requiring special 
hardware.

PTP can achieve much better accuracy than NTP, but this is only the case if only special hardware 
is used which explicitly supports PTP.

As a conclusion you can say that 

1. NTP can achieve pretty good accuracy in both small and large networks where you don't 
know which routes the packets take, and you can't and don't have to rely on special hardware 
support for the protocol.

2. PTP can yield very high accuracy provided that the network infrastructure fully supports the 
protocol. Obviously this is easier to implement in a closed network where the administrators 
have full control over the network infrastrucure.

3. If the special hardware support for PTP is not available, PTP suffers from the same 
limitations as NTP, i.e. the unknown delays occurring during the transport of a network 
packet. Under these conditions NTP can even yield better results due to the statistical 
methods it uses.

30



Meinberg has made some tests with NTP using the same hardware time stamping methods as PTP, 
and the results showed that NTP can yield the same accuracy as PTP if the basic conditions are 
similar.

The problem here is that the current specification of the NTP protocol does not provide a method to 
send a follow-up message to the client in order to let the client know when the original packet really 
made its way onto the wire. If such methods are added to the NTP protocol then this breaks 
compatibility with existing implementations of NTP.

Anyway, NTP can yield pretty good accuracy on Unix-like systems, even without dedicated 
hardware. The example below is from a Linux machine which synchronizes to one server on the 
local LAN and some other servers over the internet (times are in milliseconds):

# ntpq -p
   remote        refid   st t when poll reach   delay   offset  jitter
======================================================================
*gateway.py.mein .GPSi.   1 u   18   64  377    0.153    0.033   0.036
+ptbtime1.ptb.de .PTB.    1 u    8   64  377   17.342   -0.710   1.032
-ptbtime2.ptb.de .PTB.    1 u   14   64  377   17.725   -0.780   1.026
+tick.usno.navy. .USNO.   1 u   62   64  377  113.213   -0.896   3.455
-tock.usno.navy. .USNO.   1 u   66   64  377  113.597    0.920   1.523

Server gateway is a Linux PC with a GPS PCI card on the local LAN. See the low packet delay and 
the determined time offset of 33 microseconds only. Ptbtime1 and ptbtime2 are public NTP servers 
of the German PTB (i.e. the German counterpart of the U.S. NIST). Please note the determined time 
offset is still below 1 millisecond, though the packet delay is about 17 milliseconds. Tick and tock 
are the public USNO servers, and the determined time offset is still below ± 1 millisecond even 
though the packet delay is 113 milliseconds, and the network route goes from one continent to 
another.

This impressingly shows the capabilities of NTP. However, the chapters above should also make 
clear where the limitations can be found.

31



7 Time Dissemination by Radio Signals

7.1 Time Dissemination by Satellites

7.1.1 GPS

The Global Positioning System (GPS) is a satellite-based radio-positioning, navigation, and time-
transfer system. It was installed by the United States Department of Defense and provides two 
levels of accuracy; the Standard Positioning Service (SPS) and the Precise Positioning Service 
(PPS). The SPS has been made available to the general public, but the PPS is encrypted and only 
available for authorized (mostly military) users.

GPS operates by accurately measuring the propagation time of signals transmitted from the 
satellites to the user's receiver. A nominal constellation of 21 satellites together with several active 
spares, in six orbital planes at about 20000 km altitude, provides a minimum of four satellites in 
view 24 hours a day at every point on the globe. Four satellites must be received simultaneously to 
determine both the receiver position (x, y, z) and receiver clock offset from GPS system time. All 
satellites are monitored by ground control stations which determine the exact orbit parameters and 
the clock offset of the satellites' on-board atomic clocks. These parameters are uploaded to the 
satellites and become part of a navigation message which is retransmitted by the satellites and 
passed to the user's receiver. 

The high precision orbit parameters of the satellites are called ephemeris parameters, and a reduced 
precision subset of the ephemeris parameters is called a satellite´s almanac. While ephemeris 
parameters must be evaluated to compute the receiver's position and clock offset, almanac 
parameters are used to check which satellites are in view from a given receiver position at a given 
time. Each satellite transmits its own set of ephemeris parameters, and almanac parameters of all 
existing satellites. 

GPS system time differs from the universal time scale (UTC) by the number of leap seconds that 
have been inserted into the UTC time scale since GPS was initiated in 1980. The current number of 
leap seconds is part of the navigation message supplied by the satellites, so a receiver's internal real 
time can be based on UTC. Conversion to local time and handling of Daylight Savings Time each 
year is done by the receiver's microprocessor once these parameters have been programmed by the 
user. 

7.1.2 GLONASS

7.1.3 Compass / Beidou

32



7.1.4 Galileo

7.2 Time Dissemination by Long Wave Transmitters

7.2.1 DCF77 in Germany

The DCF77 long wave (also Low Frequency, LF) transmitter is located in Mainflingen near 
Frankfurt, Germany. The LF transmitter disseminates the Legal Time of the Federal Republic of 
Germany which is either the Central European Time, CET (in German: Mitteleuropäische Zeit, 
MEZ) or the Central European Summer Time, CEST (in German: Mitteleuropäische Sommerzeit, 
MESZ). The DCF77 signal can be received in large parts of Europe. 

The DCF77 frequency and signal is derived from the atomic clocks of the Physikalisch-Technische 
Bundesanstalt (PTB) in Braunschweig, Germany, the national institute for science and technology 
and the highest technical authority of the Federal Republic of Germany for the field of metrology 
and physical safety engineering. Transmission is controlled by the PTB's Department of Length and 
Time. The coded information includes the current time of day, date of month, and day of week in 
coded one-second pulses. The complete time message is transmitted once every minute. 

At the beginning of every second the, amplitude of the precise 77.5 kHz carrier frequency is 
reduced by 75% for a period of 0.1 or 0.2 sec. The length of these time marks represents a binary 
coding scheme using the short time mark for logical zeroes and the long time mark for logical ones. 
Data representing the current date and time and some parity and status bits are encoded in the time 
marks from the 15th to the 58th second of every minute. The absence of the time mark at the 59th 
second indicates that a new minute will begin with the next time mark. 

In order to increase the accuracy of the demodulated time marks, the carrier of DCF77 is also 
modulated with a pseudo-random phase noise. The pseudo-random sequence has a length of 512 
bits, and is transmitted in the interval between the AM marks. Due to the pseudo-random 
characteristic of the sequence the mean deviation of the carrier phase is zero. The phase modulated 
carrier can be received with a larger bandwidth receiver. Correlation algorithms also used with 
satellite transmission techniques allow PZF receivers to determine the correct time with an accuracy 
of microseconds, which is far superior to the accuracy achieved by standard AM receivers. 

7.2.2 MSF/Rugby in the United Kingdom

7.2.3 WWVB in the United States

7.2.4 HBG in Switzerland

HBG was a long wave time signal transmitter located in Switzerland near Lake Geneva (Lac 
Léman, Genfer See). It was put into operation in 1966, with a 75 kHz carrier frequency and 25 kW 
transmission power. 

33



The transmitter was last operated by the Swiss Metrology Institute METAS but was put out of 
operation at the end of 2011. See
http://www.news.admin.ch/message/?lang=de&msg-id=28671

7.2.5 JJY in Japan

7.3 Comparison Satellite Systems vs. Long Wave Signals

7.3.1 Signal Reception

Satellite receivers usually require an outdoor antenna with clear view to the sky for reliable 
operation whereas long wave signals can eventually be received inside buildings. However, modern 
buildings are often reinforced concrete constructions with much metal inside the walls and metal-
coated window panes, so the original signal is very weak inside such buildings, and thus an outdoor 
antenna is often recommended or even required for proper operation of long wave receivers. 

On the other hand, long wave signals are usually very susceptible to electrical noise which may 
superimpose the original signal and thus inhibits reliably decoding of the timing signal. Satellite 
signals are usually based on some enhanced broadcast technology like spread spectrum technique, 
so they are much less susceptible to electrical noise than the simple long-wave signals.

7.3.2 Signal Propagation Delay Compensation

Time signal transmitters usually start to transmit a well-defined signal at a given time. When the 
signal arrives at timing receiver the receiver knows at which point in time the signal has been 
transmitted, but it has taken some time for the signal to propagate from the transmitter to the 
receiver, so the signal arrives too late. Thus, if the receiver is to provide accurate time it needs a 
way to determine the signal propagation delay, and compensate it.

In most cases a long-wave time signal is only broadcasted by a single station, so the signal 
propagation delay depends basically on the receiver's distance from the transmitter. 

For satellite-based navigational systems it is anyway required that receivers can track several 
satellites at the same time, and exact measurement of the signal propagation delay is a prerequisite 
for accurate computation of the receiver's position. So the signal delay is compensated 
automatically, and very accurately, and thus timing based on navigational satellite systems yields a 
very high accuracy without requiring any manual intervention depending on the receiver position.

34

http://www.news.admin.ch/message/?lang=de&msg-id=28671


8 Hardware Reference Time Sources
Hardware reference time sources are hardware devices which are connected to the local computer in 
order to provide an accurate time. Such devices can be PCI or PCI Express cards installed inside the 
computer, USB devices plugged in externally, or even radio clocks connected via a serial RS-232 
interface.

Such hardware reference time sources can be used to discipline the system time, and additionally or 
alternatively they can be used directly by applications which require accurate timestamps.

In order to discipline the system time a piece of software is required which reads both the reference 
time and the system time in cyclic intervals, computes the difference and applies an adjustment to 
steer the system time such that the difference becomes as small as possible.

How good the system time can be disciplined using a hardware time reference depends on:

• the accuracy of the reference time source
• the access time required to read a time stamp
• the granularity of the data structure used for transport a time stamp
• the characteristics of the operating system and its timekeeping
• the implementation of the control loop in the time synchronization application.

Meinberg provides devices which get the reference time either from the GPS satellites, from an 
IRIG generator, from one of several public long wave transmitters, or from a PTP grandmaster. 
There are also devices available which have several receivers built in and thus can evaluate several 
reference time signals.

8.1 Reference Time Signal Type Considerations

8.1.1 Satellite Signals

8.1.2 Longwave Signals

35



8.1.3 IRIG And Similar Timecode Signals

The frequently-used term IRIG signals usually refers to a whole group of serial timecodes which 
use a continuous stream of binary data to transmit information on date and time. The individual 
time code formats can be distinguished by the signal characteristics, e.g. modulated versus 
unmodulated signals, by the data rate, and by the kind of information included in the transmitted 
data, so which specific timecode should be used preferably for an application depends on the 
specific requirements of that application.

Back in 1956 the TeleCommunication Working Group (TCWG) of the American Inter Range 
Instrumentation Group (IRIG) was mandated to standardize different time code formats, 
resulting in IRIG Document 104-60 which was published in 1960. Over the years there have been a 
number of revisions and extensions to the original specification. The current version of the 
document is IRIG Standard 200-04 which was published in 2004 and is available for download on 
the U.S. Range Commander Councils publications web page:
https://wsmrc2vger.wsmr.army.mil/rcc/PUBS/pubs.htm.

8.1.3.1 Original IRIG Signals

Timecode signals defined by the various versions of IRIG Standard 200 are classified by a letter 
indicating the basic format, plus a three digit numeric code specifying the signal characteristics 
according to the following table:

First letter:
Format / Data Rate

A
B
D
E
G
H

1000 pps
100 pps
1 ppm
10 pps
10000 pps
1 pps

1st digit:
Modulation

0
1
2

DC Level Shift (DCLS), pulse width code
Sine wave carrier, amplitude modulated
Manchester modulated  (Note 1)

2nd digit:
Carrier Frequency,
Resolution

0
1
2
3
4
5

No carrier / index count interval
100 Hz / 10 millisecond resolution
1 kHz / 1 millisecond resolution
10 kHz / 100 microsecond resolution
100 kHz / 10 microsecond resolution
1 MHz / 1 microsecond resolution

3rd digit:
Coded Expressions

0
1
2
3
4
5
6
7

TOY, CF, SBS
TOY, CF
TOY
TOY, SBS
TOY, YEAR, CF, SBS  (Note 2)

TOY, YEAR, CF  (Note 2)

TOY, YEAR  (Note 2)

TOY, YEAR, SBS  (Note 2)

Note 1): Extension added in IRIG Standard 200-98 from 1998
Note 2): Extension added in IRIG Standard 200-04 from 2004

36

https://wsmrc2vger.wsmr.army.mil/rcc/PUBS/pubs.htm


The Coded Expressions mentioned in the table above provide a timecode receiver with the 
following information:

• TOY: Time-Of-Year, including hours, minutes, seconds, and day-of-year. This information 
is included in every code type defined by the IRIG standards.

• CF: Control Field segment which can optionally be used to transport application-specific 
information. Some newer IRIG codes and codes defined by other standardization 
organizations use parts of the original control field segment to define well-known extensions 
providing additional useful information like year number, UTC offset, etc.

• SBS: Straight Binary Seconds, i.e. second-of-day. This field is optional, and the transmitted 
information can also be computed from the transmitted hours, minutes, and seconds. 
Probably this field has been useful in the pre-computer era when it was hard to do such 
computations in IRIG receivers.

• YEAR: A 2 digit year number, i.e. year-of-the-century. This field is useful to determine the 
calendar date unambiguously, see chapter Selecting An Adequate Timecode Signal. 
However, for the original IRIG signals this field has only be specified in IRIG Standard 200-
04 from 2004.

Some popular legacy IRIG codes include IRIG-B122 and IRIG-B002. According to IRIG standard 
200 the characteristics of these signals are:

IRIG-B002:
• B: 100 pps data rate
• 0: DCLS pulse witdh code not modulated onto a carrier
• 0: no carrier frequency
• 2 includes hours, minutes, seconds, and day-of-year

IRIG-B122:
• B: 100 pps data rate
• 1: amplitude modulated sine wave
• 2: 1 kHz carrier frequency
• 2 includes hours, minutes, seconds, and day-of-year

IRIG-B126:
• B: 100 pps data rate
• 1: amplitude modulated sine wave
• 2: 1 kHz carrier frequency
• 2 includes hours, minutes, seconds, day-of-year, and 2 digit year number

So for example the IRIG-B126 code is similar to the popular IRIG-B122 code, but in addition 
transports a 2 digit year number which allows unambiguous conversion of the day-of-year to a 
calendar date.

In addition to the original IRIG codes there are some other popular timecodes which have been 
defined by other standardization organizations in order to meet the requirements of new 
applications. Those timecodes are often very similar to the original timecodes but provide some 
useful extensions.

37



8.1.3.2 AFNOR NF S87-500

In 1987 the French standardization organization Associacion Française de Normalisation 
(AFNOR) published a French standard AFNOR NF S87-500 which defines a timecode signal 
similar to IRIG signals. That AFNOR code also transports the current time and day-of-year, but has 
been defined to always include a 2 digit year number.

This timecode can be used as an unmodulated signal, or amplitude modulated onto a 1 kHz carrier 
frequency, so today it is basically similar to IRIG-B006/B126. However, these IRIG signals have 
only been defined in 2004, i.e. some years after AFNOR NF S87-500 has been published.

Optionally the AFNOR signal can also include the day-of-week number (1..7, 1 = Monday), plus 
the calendar date (month and day-of-month), plus an SBS number like the IRIG codes.

Unlike the original IRIG standards the AFNOR standard also defines the electrical signals to 
transport the unmodulated timecode, which should be according to RS-422 / RS-485 specifications.

The publication can be purchased following the links on the ANOR home page:
http://www.afnor.org

8.1.3.3 IEEE 1344-1995 and IEEE C37.118-2005

In 1995 a working group of the Institute of Electrical and Electronics Engineers (IEEE) 
published IEEE standard 1344-1995 about Synchrophasors for Power Systems which also 
includes the specification of a timecode. This timecode is based on a IRIG-B122/B123 code but 
uses the control field (CF) to transport some additional information useful to overcome some 
limitations of the original IRIG time codes. These so-called IEEE 1344 extensions include:

• A 2 digit year number to be able to determine if a year is a leap year or not, thus allowing 
for a unambiguous conversion of the day-of-year number to a calendar date.

• Leap Second Information:
 - An announcement bit which is set up 59 seconds before the leap second event
 - A leap second indicator which is set during the leap second

• Daylight Saving Time (DST) Information:
 - An announcement bit which is set up to 59 seconds before DST status changes
 - A DST indicator which is set while DST is active

• UTC offset information. If local time is transported by the IRIG frame then this parameter 
can be used to determine UTC time.

Warning: there are discrepancies both in the different standards, and in existing 
implementations, about the way the UTC offset has to be applied. See the next chapter for 
details.

• A 4 bit Time Figure Of Merit (TFOM) code which allows the IRIG generator to pass an 
accuracy specifier to IRIG receivers, where TFOM 0 means “highest accuracy”, and TFOM 
15 (0F hex) means “unsynchronized”.

In 2005 the IEEE standard 1344-1995 was revised and the revised version was published as IEEE 
standard C37.118-2005. The revised standard defines the same extensions for the timecode as the 

38

http://www.afnor.org/


original IEEE 1344 standard, but unfortunately the way to handle the UTC offset was completely 
messed up in the revised version, which can possibly cause confusion and can result in a wrong 
UTC time computed by IRIG receivers. See the next chapter for details.

The publications of these standards can be purchased following the links on the IEEE home page:
http://www.ieee.org

8.1.3.4 UTC Offset Discrepancies between IEEE1344-1995 and C37.118-2005

Care must be taken if the IEEE 1344 or IEEE C37.118 timecodes are used to transfer local time 
instead of UTC.

Both standards contain two pieces of text describing how to handle the UTC offset parameter:

• A table describing the assignment of the control bits, including an explanation how to 
handle the time offset bits

• A chapter of descriptive text explaining how UTC offsets are to be handled, including an 
example for the computation

In the IEEE standard 1344-1995 both pieces of text consistently and unambiguously explain 
how to handle the UTC offset.

In the IEEE standard C37.118-2005 the chapter of descriptive text has been modified and now 
defines the UTC offset just with the reversed sign compared the original IEEE standard 1344-1995. 
The associated computation example has been modified accordingly. While it is in general not wise 
to change specifications in this way, things are even worse since the explanation text in the control 
bit assignment table has not been updated accordingly and is still the same as in the original 
standard from 1995.

So the IEEE C37.118-2005 standard contains two pieces of text which define two 
contradictory ways to handle the UTC offset.

IRIG devices manufactured by Meinberg implement the IEEE 1344 timecode as specified in the 
IEEE standard 1344-1995. Some of these devices can alternatively be configured to use the 
C37.118 code, which is similar to the IEEE 1344 setting but evaluates the UTC offset with reversed 
sign as specified in by the modified text in IEEE standard C37.118-2005.

Attention:

There are 3rd party IRIG devices out there which apply the UTC offset as specified in the modified 
C37.118 text, but claim to support IEEE 1344 extensions. So if local time is transmitted in a 
timecode with IEEE 1344 extensions then care must be taken that the UTC offset is evaluated 
by the IRIG receiver in the same way as output by the IRIG generator. Otherwise the UTC 
time computed by the receiver may be absolutely wrong, and the system time of a PC synchronized 
by an IRIG receiver may be set in a wrong way.

39

http://www.ieee.org/


To substantiate the statements above here are some quotes from the original and revised IEEE 
standards. In both documents the explanation for the time offset bits in the control bit assignment 
table F.1 reads:

Offset from coded IRIG-B time to UTC time.
IRIG coded time plus time offset (including
sign) equals UTC time at all times (offset will
change during daylight savings)

This is consistent with the descriptive text in IEEE standard1344-1995:

F.3.4 Local time offset

The local time offset is a 4 b binary count with a sign bit. An extra bit is included for an 
additional 1/2 h offset used by a few countries. The offset gives the hours difference (up to ± 
16.5 h) between UTC time and the IRIG time (both BCD and SBS codes). Adding the offset 
to the IRIG-B time using the included sign gives UTC time (e.g., if the IRIG-B time is 
109:14:43:27 and the offset is -06 given by the code 0110 (.0), then UTC time is 
109:08:43:27). The local time offset should always give the true difference between IRIG 
code and UTC time, so the offset changes whenever a daylight savings time change is made.  
Keeping this offset consistent with UTC simplifies operation of remote equipment that uses 
UTC time.

In IEEE standard C37.118-2005 the explanation for the time offset bits in the control bit assignment 
table F.1 is exactly the same as in IEEE 1344-1995, but the descriptive text says:

F.1.4.4 Local time offset

The local time offset is a 4-bit binary count with a sign bit. An extra bit has been included 
for an additional 0.5 h offset used by a few countries. The offset gives the hours difference 
(up to ± 16.5 h) between UTC time and the IRIG-B time (both BCD and SBS codes). 
Subtracting the offset from the IRIG-B time using the included sign gives UTC time. [For 
example, if the IRIG-B time is 109:14:43:27 and the offset is –06 given by the code 0110 
(.0), then UTC time is 109:20:43:27.] The local time offset should always give the true 
difference between IRIG code and UTC time, so the offset changes whenever a DST change 
is made. Keeping this offset consistent with UTC simplifies operation of remote equipment 
that uses UTC time.

So obviously the original standard consistently says:

IRIG time + UTC offset = UTC

whereas the revised standard from 2005 states in the descriptive text:

IRIG time – UTC offset = UTC

which leads to a wrong UTC time if the IRIG generator applies to the original standard and the 
IRIG receiver to the revised standard, or vice-versa.

40



8.1.3.5 Modulated vs. Unmodulated (DCLS) Timecode Signals

The raw time code is a continuous stream of binary data transmitted at a given rate. Optionally this 
binary data stream can be used to modulate a sine wave carrier of a defined frequency.

Since the logic levels of the raw data stream are usually represented by DC voltage levels, the 
unmodulated code frames are also called DC Level Shift signals, or DCLS signals.

Depending on the signal characteristics there is a wide range of applications for specific IRIG 
codes. For example, timecodes modulated onto a tone frequency carrier signal can be transmitted 
over a telephone line, or be recorded on a magnetic tape. On the other hand, DCLS signals can 
easily be transmitted by digital transmission lines like RS-485 or fiber optics.

Also the accuracy of a decoded timecode signal can depend on the signal characteristics. Due to its 
nature as digital signals DCLS timecodes have well-defined slopes, and the propagation delays of 
digital line drivers and receivers are usually pretty constant. It is pretty easy to generate an accurate  
trigger signal from a DCLS slope and thus yield a high accuracy from a received DCLS timecode.

For modulated signals the exact start of a signal frame is bound to the zero-crossing of the carrier 
signal, i.e. the carrier phase. On the receiver side it requires much more effort to detect the exact 
zero crossing point of a modulated sine-wave signal than capturing a digital slope. Also, modulated 
timecodes often use filters, transformers, automatic gain control (AGC) circuits, etc., in the signal 
transmission path which delay the analog signal and thus affect the carrier phase. It requires much 
effort to compensate such signal delays and yield an accuracy from a modulated timecode signal 
which is in the same range as the accuracy of a DCLS signal.

8.1.3.6 Selecting An Adequate Timecode Signal

Accuracy requirements or the availability of signal transmission infrastructure (cables or similar) 
can often help to prefer some modulated or DCLS timecode. However, also the kind of information 
transported by a specific code has to meet the requirements of an application.

All types of IRIG signals contain the day-of-year number and the current time of that day. This is 
sufficient to drive wall clocks which simply display the time transmitted by the IRIG signal, but this 
may not be sufficient e.g. to synchronize the computer time. For example, if the system time of 
computers is to be disciplined in a reliable way using a timecode signal then the timecode receiver 
needs to be able to derive both the correct calendar date and the current UTC time from the 
incoming signal.

Unfortunately most basic IRIG signal frame types like B002 or B122 neither include the year 
number, nor do they provide any information telling whether the transmitted time is UTC, or some 
local (DST or standard) time with a certain offset to UTC.

If the day-of-year number from a received timecode signal is to be converted to a human readable 
calendar date then obviously the conversion is ambiguous after February 28, since the next day can 
either be March 1, or February 29, depending on whether the current year is a leap year, or not.  
Thus the timecode receiver needs to know the current year number, either by configuration, or 
preferably by using a timecode format providing the year number.

Also, if the time transmitted by a timecode signal is to be converted to UTC in order to discipline a 
computer's UTC time then the receiver needs to know whether the transmitted time is UTC or local 
time, and if it is local time it needs to know the UTC offset. Of course it is easily possible to 

41



configure the UTC offset on the receiver side, but at the beginning or end of DST the UTC offset 
will jump back or forth by the amount of the DST offset, in which case the converted UTC time 
would also step back and forth, and so would the system UTC time of the computer to be 
disciplined, which may have huge impacts e.g. on database applications.

Newer IRIG formats are usually compatible with the old basic formats, but in addition include some 
or all of the required information in extensions coded in the control field segment of the IRIG 
frame.

A reliable way to synchronize the computer time is to use at least a timecode which includes the 
year number (e.g. IRIG-B126, AFNOR NF S87-500, or one of the IEEE formats), and let the 
timecode generator transmit UTC time.

If the local time must also be transmitted in the same timecode signal (e.g. to drive wall clocks) then 
the timecodes defined in IEEE 1344-1995 or IEEE C37.118-2005 are the best choice. The signals 
are compatible with the popular IRIG-B122 format, but timecode receivers which need to compute 
UTC time can do this easily since the UTC offset is also transmitted by those signals. Care must be 
taken, however, that both the timecode transmitter and the timecode receiver handle the UTC offset 
with the same sign. See chapter UTC Offset Discrepancies between IEEE1344-1995 and C37.118-
2005 for details.

8.2 Access Time Considerations

8.2.1 PCI Cards

8.2.1.1 PCI Express Limitations

Even though PCI Express has been designed for a high throughput, there is an overhead if single 
data items need to be transferred. This it due to the serial data transmission used with PCI Express.

If an application accesses a register or memory location on a PCI Express card then the read 
command plus address from which to read needs to be serialized on the mainboard, transmitted 
serially to the card, be converted back to a parallel address, the data be read parallel and then 
serialized, the serialized data transferred back to the mainboard, and finally be converted back to 
parallel to be read by the CPU.

The high throughput with PCI Express can only be achieved if large amounts of data are transferred 
using DMA, in which case the steps above are pipelined, e.g. while one data item is transferred to 
the mainboard, the next data item is already serialized, etc. so there is a constant data stream at very 
high speed.

If you need to read 2 x 32 bit data words to get a 64 bit timestamp, e.g. including seconds and 
fractions of a second, then all of the above has to happen twice, and pipelining is not possible, so 
the two read accesses take 4 to 5 microseconds to execute.

Unfortunately it does not make sense to use DMA just to transfer 64 bits of data whenever an 
application requires this. The overhead to control the DMA transfer, plus the following DMA 
transfer took longer to execute than the 2 subsequent simple read accesses.

42



In addition, the PCI bus is subject to bus arbitration, so even a DMA transfer can be delayed if there 
is another ongoing transfer using the same partial bus.

This effectively limits the maximum access rate to read time stamps directly from a PCI Express 
card. The problem is not specific to a specific PCI card, mainboard, or operating system.

8.2.1.2 API Calls available for Meinberg PCI Cards

Meinberg PCI cards support different API calls, some of which require interaction with the 
microcontroller on the card, so there are execution times from a few microseconds up to about a 
millisecond on consecutive reads, depending on the type of microcontroller on the card. Please note 
the returned time is latched at the beginning of the call, so the returned time is associated to the 
entry of the call. This means you can still get high accuracy to discipline the system time, which 
usually only requires reading time stamp in intervals such as once per second, but there are some 
limitations for applications which need to read high resolution time at a very high rate.

Meinberg PCI Express cards (i.e. the ...PEX cards) provide a different PCI interface chip where the 
card's time counter chain is accessible through memory mapped registers. This means the API calls 
are as fast as possible and do not require interaction with the on-board microcontroller.

The execution time to read a 64 bit time stamp from our PEX cards is about 5 microseconds, but the 
limitation is due to the PCI Express bus, not due to the cards.

Unfortunately the PCI interface chip on the Meinberg standard PCI cards does not support the 
memory mapped registers, so PCI Express cards should be used preferably, if possible.

A separate whitepaper is available from Meinberg which describes the Meinberg driver policy and 
API concepts.

8.2.1.3 Circumventing PCI Access Times

E.g. under Windows the reference implementation of the NTP program uses the Windows 
QueryPerformanceCounter (QPC) API to interpolate the system time between 2 timer ticks. The 
Windows Hardware Abstraction Layer (HAL) uses one of the available timer circuits on the board 
to implement the call. If the HAL uses the power management timer (PM timer) which is simply a 
register in the chipset then it also takes about 3 microseconds to read the timestamp, simply because 
the register is in the peripheral chipset which is connected via a local bus. If the HAL uses the 
CPU's TSC registers instead then it takes just a couple of nanoseconds to read a timestamp.

So a way to get time stamps at a higher rate is to use an interpolation scheme where the PCI card's 
time stamp plus an associated TSC count are read in periodic intervals, e.g. once per second, then 
the application reads only the current CPU's TSC count for timestamping, and converts that TSC 
count to a real time stamp by relating it to the latest TSC/time stamp pair. 

However, if the TSC is being used then there may be different problems, depending on the specific 
CPU type installed on the mainboard. E.g. the TSC clock frequency may change whenever the CPU 
clock frequency changes for power saving efforts (e.g. Intel's Speedstep, or AMD's Cool'n'Quiet), 
or the different TSC counters in different cores of the same CPU may not be synchronized, in which 
case the retrieved time stamps may not be consistent if a piece of code can be executed on different 

43



CPU cores.

This may be fixed if the application is alway scheduled to run on the same CPU (process affinity / 
thread affinity) or if it is made sure the there are CPUs installed on the mainboard where the TSCs 
are always synchronized.

The mbgxhrtime example program from our Linux driver package implements the interpolation 
scheme described above. It starts an own thread to read the TSC/time stamp pairs once per second, 
calculates the real TSC frequency from the first 2 readings, and then generates the following time 
stamp using interpolation.

You also need to take into account that an API call which reads a time stamp may at any time be 
interrupted by a hardware IRQ, or be delayed if there is an ongoing DMA transfer from a different 
card on the same bus, which may fudge the time stamp you application receives.

Unfortunately it is very hard to implement high resolution, high accurate timestamping which works 
reliably, and potential errors have to be taken into account.

44



8.2.2 Native Serial Port

1.) how accurate is the internal time's second changeover:
better than 1 microsecond for GPS, a few milliseconds for non-PZF DCF77

2.) how close to the second changeover is the serial time string sent:
a few microseconds for GPS162, about 1 millisecond for C51

3.) how accurately can the serial time string be received
depends on whether the serial port is a real serial port, or whether RS232-to-USB or RS232-to-
LAN converters are involved which introduce additional latencies depending on the converter type 
and model

4.) how long does it take until the receiving software becomes aware of the incoming timestring:
depends on the serial port driver. Todays UARTs usually have receive FIFOs which notify the 
driver/application for incoming characters only after several characters have been received, thus 
introducing a delay which is in most cases unspecified, unless the application can determine or 
change the recive FIFO trigger level.

5.) which effort does the receiving software take to compensate the transmission delay of the serial 
string, which depends on the baud rate and framing:
E.g. at 19200 baud it takes 52 microseconds to transmit a single bit, but for 2400 baud it takes 417 
us. Framing 8N1 requires 10 bits per character, but 7E2 uses 11 characters per byte. So 
transferring a single character takes 0.52 or 0.57 ms at 19200, but takes 4.17 or 4.58 ms at 2400.

All the delays mentioned above can be added in a worst case configuration, thus making the 
resulting timing accuracy for an application much worse than the accuracy of the internal time 
inside the clocks.USB-to-Serial Converters

8.2.3 USB Devices

8.2.4 Fiber Optic

8.3 Time Resolution Considerations

45



8.4 Disciplined vs. Undisciplined Oscillator Considerations

Each oscillator generates an output frequency which is more or less off its nominal frequency. E.g., 
if the nominal frequency is 10.000000 MHz then one particular oscillator can run at 10.000001 
MHz or 10.000002 MHz, and a different oscillator of the same type can run at 9.999998 MHz. The 
current real frequency also varies over time due to ageing, but also due to variations in the 
ambient temperature.

The better the quality of an oscillator, the less are the offsets from the nominal frequency, and the 
less is the drift. A high quality quartz oscillator which comes with a temperature compensation to 
minimize frequency variations due to temperature is called Temperature Controlled Xtal 
Oscillator (TCXO). In most cases, however, the frequency is even more stable if the built-in 
crystal is kept at a constant temperature. So there are oscillators with come with a built-in oven, and 
thus such an oscillator is called Oven Controlled Xtal Oscillator (OCXO).

The disadvantage of high quality oscillators is the power consumption which is usually higher than 
with cheap crystals, especially for OCXOs due to the built-in oven. This may be important if there's 
only limited power available, e.g. for USB devices which are only supplied via the USB connector.

Anyway, even the best oscillator may have a frequency offset from its nominal frequency, even 
though this offset is usually much smaller than the offset of a cheap oscillator or crystal.

Disciplining an oscillator means the frequency offset is determined by help of the incoming 
reference signal, and the oscillator is steered such that its output frequency is tweaked to the 
nominal frequency as good as possible. In order to generate a stable 1 PPS signal you just have to 
count exactly 10000000 cycles, and in order to shift the PPS output to start a little bit earlier or later 
you simply increase or decrease the oscillator frequency for a certain interval.

The advantage of this approach is also that the oscillator can continue to be used as reference time 
source if the reference signal temporarily fails, but the oscillator has been properly disciplined 
before when the signal was still available. This is usually referred to as holdover mode. The 
maximum holdover interval depends on:

• Accuracy requirements, i.e. the maximum allowed time offset after a given holdover 
interval.

• The quality and stability of the oscillator, i.e. how good the oscillator keeps its output 
frewquency and thus the derived time using the last recent disciplination value.

• How good the oscillator has been disciplined before when the reference signal was still 
available. This may depend on the systematic accuracy of the reference signal type.

Disciplined oscillators are usually part of more expensive reference time sources, whereas cheaper 
reference time sources come with cheaper oscillators or crystals, similar to the cheap oscillator 
usually installed on computer mainboards. Also, cheap oscillators often don't provide a way to 
discipline the output frequency.

For example, on the more expensive cards manufactured by Meinberg there is often a 10 MHz high 
quality oscillator which is disciplined by the incoming reference signal. The oscillator frequency is 
then made available as an output signal, and it drives a counter chain which generates the 1 PPS 
output signal.

46



On the cheaper cards and the USB devices manufactured by Meinberg there is no high quality 
oscillator which can be disciplined but a standard crystal which drives the microcontroller clock. 
That crystal is not even necessarily running at 10 MHz, but at a frequency required by the 
microcontroller, and each individual crystal on each individual device of the same type has its 
individual frequency offset, which is, by the way, similar to value reported in the NTP daemon's 
drift file. See also chapters “Why the Undisciplined Software Clock Drifts” and “The NTP Drift 
File”

The PPS output signal is then generated by counting the cycles of the crystal at its real frequency, 
e.g. if a crystal runs at 10.000002 MHz then the PPS signal starts every 10000002 cycles, and if the 
crystal runs at 9.999999 MHz then the PPS signal starts every 9999999 cycles. If the PPS signal 
needs to be shifted to occur earlier or later then one cycle is inserted or skipped in the counter chain.

8.5 Hardware PPS Considerations

8.6 Meinberg's Approach to PTP Client PCI Cards

In order to yield highest accuracy with PTP hardware timestamping of PTP network packets must 
be supported on every network node involved in the packet exchange.

Of course the LANTIME PTP grandmasters manufactured by Meinberg provide this support on 
their PTP network ports. However, most high performance switches usually installed in data centers 
are not PTP-aware. Finally there are some points to keep in mind if a PTP program is to run directly 
on a machine:

• There must be an implementation of the PTP daemon/protocol for the host operating system.

• To yield highest accuracy, timestamping support is required for the NIC possibly assembled 
onto the mainboard, the NIC driver for the host OS must be able to queue these timestamps, 
and a software interface must be implemented in the host OS and drivers which allows the 
PTP daemon to retrieve the timestamps from the driver.

• If the system time kept by the operating system provides only limited resoluton (e.g. 1..16 
ms under Windows) there's hardly a chance to get the most possible accuracy out of PTP.

• Last but not least the timestamps from the NIC need to be related to the system time of the 
host OS, so the achievable accuracy depends on the clock source used for timestamping by 
the NIC, i.e. the stability of the oscillator, if it can be disciplined, or not, and whether TSU 
clock is derived from the same clock source as used for system timekeeping, which may 
depend on the mainboard or NIC chip.

For Meinberg as a manufacturer of PCI cards which are to be used on different computers with 
different NIC chips, and different operating systems, it would be hard to provide and maintain a 
general solution, so Meinberg has made a different approach with their PTP client PCI card 
PTP270PEX.

The PTP270PEX card provides an own LAN port which is not visible to the host PC, but is used by 
a small single board computer (SBC) also installed on the PCI card, running the PTP protocol stack 

47

http://www.meinberg.de/english/products/ptp270pex.htm


and disciplining a high quality oscillator which drives the on-board clock.

The advantage of this approach is that all the timing critical stuff runs on the card in a known, stable 
environment, and does neither depend on the hardware of the PC in which the card is installed, nor 
on the operating system type and version, since the complete PTP specific stuff is handled on-board 
the PCI card.

The on-board clock is implemented as a counter chain which also generates a 1 PPS output signal 
that can be compared to a 1 PPS signal from a PTP grandmaster to verify the computed accuracy.

Applications can directly read high accuracy, high resolution UTC time stamps from the on-board 
clock using the standard API calls provided by the Meinberg driver package for the host operating 
system. This works in the same way as with other PCI cards manufactured by Meinberg. So from 
this point of view the PTP270PEX's LAN port is similar to an antenna connector of a GPS PCI 
card.

9 Distributing Reference Time to Computers
If several computers shall be equipped with hardware reference time sources then the reference time 
signal has to be distributed to each of the devices in a way which depends on the signal type.

In order to provide several GPS cards with an antenna signal, one or more antenna diplexer(s) need 
to be installed, and antenna cables need to be wired to every single card. Since the GPS signal delay 
from the antenna to the receiver needs to be compensated to yield highest accuracy, each single 
GPS receiver needs to be configured individually according to the antenna cable length and the 
number of antenna diplexers between the antenna and the receiver. The accuracy of the on-board 
time of a GPS card is a few hundred nanoseconds.

If IRIG cards shall be used then a diplexer for an IRIG signal may also need to be installed, and a 
special cabling is required, depending on whether an unmodulated or a modulated IRIG signal is 
used. The accuracy which can be achieved for the on-board time is about 5 microseconds.

The advantage of PTP is that standard patch cables can be used for the connection. The PTP slave 
card manufactured by Meinberg has its own network interface, and the PTP protocol stack runs on a 
single board computer on the card. A PTP grandmaster (LANTIME M600/PTP) and a PTP-aware 
switch can provide several PTP slaves with the time. The achievable accuracy of the on-board time 
is 100 nanoseconds.

Each of the methods above make a highly accurate time available on a PCI card in a computer.

Individual applications can yield the highest accuracy if they retrieve the time directly from the card 
via an API call. Since all Meinberg PCI cards support the same set of API calls it makes no 
difference which card is used for the application, except for the slightly limited accuracy with IRIG 
cards.

These cards can also be used to discipline the system time. Under Linux the NTP program can be 
used to do this. In this case the NTP configuration has to be set up in a way that in steead of an 
upstream NTP server the hardware device is used as reference time source, and thus there are no 
network delays which need to be compensated.

The graph below shows a loopstats file generated by an NTP daemon running on a Linux server, 

48



using a Meinberg GPS PCI card as reference time source, recorded over one week:

The “time offs” graph displays the offset between the reference time and the system time, with a 
scale of +/- 50 microseconds. The “freq offs” graph shows the drift compensation applied to the 
system clock in order to compensate the oscillator's frequency offset, in parts per million (PPM). 
The frequency offset variations which can be seen are due to variations of the ambient temperature. 
The mean value of that frequency offset is the crystal's native offset, which is a property of the 
individual crystal.

49



10 Time Synchronization Problems with Virtual Machines

10.1 General Information

Timekeeping in virtual machines (Vms) is tricky. If timer tick interrupts are virtualized then the 
interrupt handler in a particular VM can be delayed when the physical machine is e.g. busy with 
other VMs, and next time when the physical host is idle, be executed as a batch to catch up.

This means that if the time in a VM is compared to a real external reference clock in regular 
intervals the time difference observed in subsequent comparisons can jump back and forth even 
though the reference clock is stable. For example, if 1 second has expired in a VM, the time of a 
real clock may have gained 1.1 seconds because the timer updates in the VM were delayed, or only 
0.9 seconds if the timer updates were batched to catch up.

So how accurately the time in a virtual machine can be disciplined by any synchronization software 
depends in general on how good the undisciplined time in a VM is kept, which in turn depends on 
the implementation of the virtualization software (i.e., the hypervisor), which has to take care that 
timer interrupts in each VM are scheduled accurately whenever an associated timer tick interval has 
expired.

So in fact the performance of time synchronization in a VM depends on the type and version of the 
operating system running in the VM, and on the type and version of the hypervisor software 
running on the physical machine, and thus scheduling the timer ticks for the Vms.

Especially, it is usually not appropriate to run a VM as time server for other machines.

Some virtualization systems provide their own mechanisms to discipline the time in a VM more or 
less accurately. Others suggest to install a software like the NTP daemon.

This section provides some links for more detailed investigation
 

The NTP Support Web: Known Operating System Issues
http://support.ntp.org/bin/view/Support/KnownOsIssues

Especially see: Xen, VMware, and Other Virtual Machine Implementations
http://support.ntp.org/bin/view/Support/KnownOsIssues#Section_9.2.2  .  

10.2 VMWare

VMWare Inc., Timekeeping in VMWare Virtual Machines
http://www.vmware.com/pdf/vmware_timekeeping.pdf
http://www.vmware.com/files/pdf/perf-vsphere-cpu_scheduler.pdf

It has been reported that in recent versions of VMWare ESX time synchronization using ntpd in a 
virtual Linux machines yields better accuracy than using the time synchronization methods 
provided by earlier versions of VMWare:
Timekeeping best practices for Linux guests
VMWare KB Article: 1006427, updated: Nov 5, 2011

50

http://www.vmware.com/files/pdf/perf-vsphere-cpu_scheduler.pdf
http://www.vmware.com/pdf/vmware_timekeeping.pdf
http://support.ntp.org/bin/view/Support/KnownOsIssues#Section_9.2.2.
http://support.ntp.org/bin/view/Support/KnownOsIssues#Section_9.2.2
http://support.ntp.org/bin/view/Support/KnownOsIssues


http://kb.vmware.com/selfservice/microsites/search.do?
language=en_US&cmd=displayKC&externalId=1006427

If the system time in a guest runs too fast then this can be due to dynamic CPU clock switching of 
the host system. This has been determined with VMWare versions which are now outdated. See:
http://wiki.ubuntuusers.de/Archiv/VMware (German language)

10.3 XEN

It seems some versions of XEN have similar issues as VMware. See:
http://xen.org/files/summit_3/Xen_HVM_SMP.pdf

10.4 Microsoft Hyper-V

Virtual PC Guy Blog: Time Synchronization in Hyper-V
http://blogs.msdn.com/b/virtual_pc_guy/archive/2010/11/19/time-synchronization-in-hyper-v.aspx

Microsoft Knowledge Base: Hyper-V Time Synchronization Doesn't Correct the System Clock in 
the Virtual Machine if it is more than 5 Seconds ahead of the Host Clock
http://support.microsoft.com/kb/2618634

51

http://support.microsoft.com/kb/2618634
http://blogs.msdn.com/b/virtual_pc_guy/archive/2010/11/19/time-synchronization-in-hyper-v.aspx
http://xen.org/files/summit_3/Xen_HVM_SMP.pdf
http://wiki.ubuntuusers.de/Archiv/VMware
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1006427
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1006427


11 Potential RTC Problems on Dual Boot Systems
Some operating systems expect the real time clock (RTC) chip on the computer's mainboard to run 
on local time according to a configured time zone, and also write the local time back to the RTC 
when the system shuts down. Windows in its different versions is a candidate which does so, 
presumably for backward compatibility with ancient MS-DOS systems. MS-DOS and the first 
Windows versions which were based on MS-DOS didn't distinguish between UTC and local time, 
and thus simply used the RTC's local time to initialize the DOS time. See also chapter “Computer 
Local Time versus Computer UTC Time”.

On the other hand, from nowaday's point of view it makes more sense to let the RTC on the 
mainboard run on UTC, let the operating system set its initial UTC system time directly from the 
RTC, and let the operating system compute the current local time according to the configured 
timezone settings.

So most Unix-like systems behave the latter way by default. This may lead to problems on dual or 
multiboot systems, e.g. if one operating system sets the RTC on the mainboard to the current local 
time when it shuts down, but a different operating system booting on the same machine expects the 
RTC to run on UTC.

Fortunately, some operating systems like Linux and BSD variants provide ways to tell the kernel 
whether the RTC runs on UTC, or on local time. Usually this can be configured during installation, 
or changed via some management tools which are specific to the distribution, e.g. using the YaST 
tool on SuSE/openSUSE Linux. The FreeBSD operating system assumes the RTC runs on local 
time if a file /etc/wall_cmos_clock exists. If this file does not exist then the OS assumes the RTC 
runs on UTC.

If all operating systems installed on the same machine are configured for the same time zone, and 
all the Unix-like systems are told the RTC runs on local time, then basically everything should be 
working well.

Unfortunately the RTC chip does not maintain a DST status flag. So a potential problem is still if a 
DST changeover occurs while the computer is powered off. For example, if Windows is shut down 
when DST is not yet in effect then the RTC is set to standard time. If a Linux system is booted a 
few hours later, and DST has started in the mean time then the Linux system expects the RTC to run 
on DST while it in fact runs on standard time. So the initial system time is off by 1 hour after 
reboot.

This problem can be fixed if a good time synchronization software is used, and a time source is 
available at boot time which provides an unambiguous time.

More detailed considerations can also be found here:

Markus Kuhn, IBM PC Real Time Clock should run in UT [2]
http://www.cl.cam.ac.uk/~mgk25/mswish/ut-rtc.html

MSDN Blogs, Why does Windows keep your BIOS clock on local time?
http://blogs.msdn.com/oldnewthing/archive/2004/09/02/224672.aspx

52

http://blogs.msdn.com/oldnewthing/archive/2004/09/02/224672.aspx
http://www.cl.cam.ac.uk/~mgk25/mswish/ut-rtc.html


12 Time Synchronization Problems Under Windows

12.1 Timer Tick Interpolation Problems

Some time synchronization software for Windows tries to interpolate the system time between 2 
timer ticks using the Windows QueryPerformanceCounter (QPC) API calls. The HAL DLL shipped 
and installed with Windows determines which of the counters available on the mainboard or in the 
CPU are used to implement the QPC API, for example the ACPI power management timer 
(PMTIMER) or the high precision event timer (HPET) implemented in the chipset, or the Time 
Stamp Counter (TSC) registers provided by modern CPUs of the Intel architecture.

There are multicore CPU types out there where the TSCs in the different cores are not synchronized 
to each other, so if the time interpolation program is executed on different CPU cores the 
timestamps can't be related properly.

Also, in some CPU types the TSC clock is derived from the CPU clock, and if the CPU clock is 
temporarily reduced for power saving then the TSC suddenly increments at a lower rate than 
usually, which also drives the time interpolation code nuts.

Possible workarounds: Disable Power Saving mechanisms (Intel SpeedStep, AMD Cool'n'Quit, 
etc.) in the PC BIOS setup, or force Windows to use the ACPI power management timer instead of 
the TSCs (Windows boot parameter /USEPMTIMER). See Microsoft support:
Programs that use the QueryPerformanceCounter function may perform poorly in Windows 
Server 2000, in Windows Server 2003, and in Windows XP
http://support.microsoft.com/kb/895980/en-us

This usually may affect Windows versions up to Windows XP and Server 2003. Newer versions 
should detect potential problems correctly and work around it automatically.

12.2 Latency Problems Affecting the Windows System Time

Latency problems usually occur if a driver or some other kernel-mode program has not been coded 
properly, so timer tick interrupts can get lost, other programs waiting for a given timer event are 
called too late, etc. This can mess up the timekeeping of the operating system itself, but it can also 
prevent time synchronization software from working properly.

Latency problems have been detected with an ataport.sys driver shipped with Windows Server 2008 
R2. This has been detected by using two latency checkers:

This one does not need to be installed, but provides just the latency measurement without assigning 
which process is to blame:
http://www.thesycon.de/deu/latency_check.shtml 

This one gives a little more detail, but requires a full Windows install:
http://www.resplendence.com/latencymon 

53

http://www.resplendence.com/latencymon
http://www.thesycon.de/deu/latency_check.shtml
http://support.microsoft.com/kb/895980/en-us


12.3 Small System Time Adjustments May Be Lost

A bug in Windows Vista and newer is that some Windows versions don't apply small time 
adjustments at all. For example, if NTP applies an adjustment less than 16 ticks to the Windows 
time this is simply ignored by Windows. However, NTP expects the adjustment to have some 
effect, but if there is no effect then the next time comparison yields a much larger difference than 
expected, and thus causes another adjustment which is probably larger than necessary. As a 
consequence this can cause large swings in the time adjustment values, and the time offset doesn't 
settle and converge towards a low value.

The current developer version of the NTP package contains a workaround for this Windows bug. 
The report and fix are discussed here: 
https://bugs.ntp.org/show_bug.cgi?id=2328 

The problem is also explained on the Microsoft support page:
SetSystemTimeAdjustment May Loose Adjustments Less than 16
http://support.microsoft.com/kb/2537623

Even though the MS report only mentions Windows 7, the Windows Server 2008 kernel is similar 
to Windows 7 and has probably the same bug.

An NTP developer version which includes a workaround for this bug can be found here: 
http://support.ntp.org/people/burnicki

Alternatively there are even newer precompiled version of NTP for Windows available on the 
internet which can be installed in the same way as described here.

Stop the NTP service, then unzip the ZIP archive with the new binaries and copy all extracted files 
over the files in your NTP installation directory (e.g. C:\Program Files (x86)\NTP\bin\). Finally 
restart the NTP service.

These developer versions have greatly improved the resulting accuracy on Windows 7 and 
Windows Server 2008 installations, and have not caused any limitations ar drawbacks.

54

http://support.ntp.org/people/burnicki
http://support.microsoft.com/
https://bugs.ntp.org/show_bug.cgi?id=2328


12.4 Polling Intervals With NTP For Windows

Under Windows all upstream servers should be configureed with lines reading:

server aa.bb.cc.dd iburst minpoll 6 maxpoll 6

where aa.bb.cc.dd has to be replaced with the host name or IP address of your NTP server. 

Generally a polling interval as short as possible should be used under Windows to let ntpd apply 
adjustments quickly, but:

Polling intervals below 6 with the developer version should not be used under Windows since this 
prevents the workaround mentioned in the previous chapter from working correctly as discussed in 
the NTP bug report 2328.

Also, higher polling intervals can cause problems under Windows. See:
NTP Bug 2341 - ntpd fails to keep up with clock drift at poll > 7
http://bugs.ntp.org/show_bug.cgi?id=2341

The graph above shows that the time offset first starts to converge as long as the poll interval is 
short (26 s or less) but stops to converge if the poing interval ramps up to 210 s.

55

http://bugs.ntp.org/show_bug.cgi?id=2341


The next graph shows that the time offset continues to converge if the polling interval is clamped to 
26 s:

The graph above also shows that the time offset first converges worse as long as the polling interval 
is below 26 s, as explained in the bug report for NTP bug 2328: 
https://bugs.ntp.org/show_bug.cgi?id=2328 

So the advice is to use "minpoll 6 maxpoll 6" as indicated in the example above.

56

https://bugs.ntp.org/show_bug.cgi?id=2328


12.5 Possible Problems in a Windows Active Directory Domain

If the time in a Windows Active Directory Domain is to be synchronized then it often not the 
preferred solution to install the NTP software package on a PDC, eventually with a hardware 
reference clock like a GPS receiver or a PCI card. Usually it is better to set up a different server as 
NTP timeserver and then simply configure the domain controller to synchronize to the external NTP 
server.

Here are some reasons for this:

• If w32time runs on the PDC then w32time marks the PDC as authoritative time source for 
the domain, so domain clients can synchronize to it.

• Depending on the w32time version and configuration, it passes time only to its clients if it is 
synchronized to an upstream time source.

• Even if you have a PCI card plus driver installed, the w32time service is not aware that the 
system time is adjusted by this driver, so it may assume the system time is not synchronized. 
Instead, w32time may try to synchronize to some default NTP server, e.g. 
time.windows.com, and thus work against the PCI card's driver.

• There are some registry setting which should be able to tell w32time the system time is 
already synchronized by some other service, but it has been found this often does not work 
reliably. Either the w32time service on the domain controller did not pass the time to its 
clients at all, or it suddenly stopped doing so after a certain period of time, for example 
exactly after 1 day of operation.

• The NTP service, on the other hand, can easily be configured not to change the system time 
but distribute it on the network. However, the NTP service on a PDC does not mark the 
PDC as authoritative time source for the domain, so clients will not detect it as reliable time 
source, so NTP may also have to be installed and configured on all the client machines.

As a conclusion and best practice you can say the best solution is to install the PCI card plus its 
driver plus the NTP packet on a different machine than the PDC, then configure the PDC's w32time 
service to use that machine as "internet time server", and thus synchronize to that machine via NTP.

In a mixed environment the preferred solution is to set up e.g. a Linux machine as NTP server since 
it can achieve better accuracy than Windows, but in a pure Windows environment any Windows 
machine can do the job as NTP server.

In case of an external NTP server w32time can be running as usual on the PDC, has a reliable time 
source to synchronize to, and the domain clients find their authoritative time source (the PDC) 
automatically.

All non-domain members can also synchronize directly to the external NTP server.

57



Bibliography
Ron Bean; The Clock Mini-HOWTO: How Linux Keeps Track of Time  
http://tldp.org/HOWTO/Clock-2.html
Markus G. Kuhn; IBM PC Real Time Clock should run in UT  
http://www.cl.cam.ac.uk/~mgk25/mswish/ut-rtc.html

58



Index


	1 Introduction
	2 Who Needs Time Synchronization?
	3 Local Time Zones and World Time Scales
	3.1 Local Time Zones and Civil Time
	3.2 Daylight Saving Time
	3.3 Historical Greenwich Mean Time (GMT)
	3.4 Atomic Time Scales and Atomic Clocks
	3.5 Atomic Time (TAI) And Coordinated Universal Time (UTC)
	3.6 Leap Seconds

	4 How Computers Keep Time
	4.1 Basic Concepts
	4.2 Resolution of the System Time
	4.3 Why the Undisciplined Software Clock Drifts
	4.4 Disciplining the System Time
	4.5 Computer UTC vs. Local Time
	4.6 How to Obtain Current Timezone Information
	4.7 Why Not Discipline The Computer's Local Time

	5 How Do I Know Which Time It Is?
	6 Network Time Transfer Protocols
	6.1 The Network Time Protocol (NTP)
	6.1.1 NTP Overview
	6.1.2 NTP and Local Time
	6.1.3 Computer Platforms Supported by NTP
	6.1.4 NTP Naming Conventions: ntp or xntp
	6.1.5 The NTP Time Synchronization Hierarchy
	6.1.6 NTP Built-In Redundancy
	6.1.7 The NTP Drift File
	6.1.8 NTP Configuration Overview
	6.1.9 NTP Configuration with Upstream NTP Servers
	6.1.10 NTP's Local Clock Driver
	6.1.11 NTP Configuration via DHCP
	6.1.12 NTP Access Restrictions
	6.1.13 NTP with Meinberg Refclocks on Unix-like Systems
	6.1.13.1 Using Meinberg Refclocks with NTP's Parse Driver
	6.1.13.2 The Parse Driver's Trust Time Parameter
	6.1.13.3 External Meinberg Refclocks under Unix
	6.1.13.4 Meinberg PCI and USB devices under Linux
	6.1.13.5 Using Meinberg PCI and USB devices with NTP's SHM driver
	6.1.13.6 Accuracy Considerations SHM versus Parse Driver

	6.1.14 NTP with Meinberg Devices under Windows
	6.1.15 NTP Broadcast Mode
	6.1.16 NTP Multicast Mode
	6.1.17 Using Hardware PPS Signals with NTP
	6.1.18 Getting Started with NTP and Troubleshooting
	6.1.18.1 Don't Change the System Time While NTP Is Running
	6.1.18.2 Time Sources Need to Be Synchronized
	6.1.18.3 Check if the NTP server claims to be synchronized
	6.1.18.4 Check if the client synchronizes to the server
	6.1.18.5 If the client does not synchronize to the server, check if the NTP packet exchange works correctly.

	6.1.19 Using NTP in a Windows Active Directory Domain
	6.1.20 Building NTP from Sources

	6.2 The Precision Time Protocol (PTP/IEEE1588)
	6.3 RADclock Daemon
	6.4 The TIME and DAYTIME Protocols
	6.5 Time Synchronization using NetBIOS/NETBEUI
	6.6 General Network Time Transfer Aspects
	6.7 Latencies due to Network Packet Transfers
	6.8 Network Latency Compensation by the NTP Protocol
	6.9 Network Latency Compensation by the PTP/IEEE1588 Protocol
	6.10 Comparison: NTP versus PTP/IEEE1588

	7 Time Dissemination by Radio Signals
	7.1 Time Dissemination by Satellites
	7.1.1 GPS
	7.1.2 GLONASS
	7.1.3 Compass / Beidou
	7.1.4 Galileo

	7.2 Time Dissemination by Long Wave Transmitters
	7.2.1 DCF77 in Germany
	7.2.2 MSF/Rugby in the United Kingdom
	7.2.3 WWVB in the United States
	7.2.4 HBG in Switzerland
	7.2.5 JJY in Japan

	7.3 Comparison Satellite Systems vs. Long Wave Signals
	7.3.1 Signal Reception
	7.3.2 Signal Propagation Delay Compensation


	8 Hardware Reference Time Sources
	8.1 Reference Time Signal Type Considerations
	8.1.1 Satellite Signals
	8.1.2 Longwave Signals
	8.1.3 IRIG And Similar Timecode Signals
	8.1.3.1 Original IRIG Signals
	8.1.3.2 AFNOR NF S87-500
	8.1.3.3 IEEE 1344-1995 and IEEE C37.118-2005
	8.1.3.4 UTC Offset Discrepancies between IEEE1344-1995 and C37.118-2005
	8.1.3.5 Modulated vs. Unmodulated (DCLS) Timecode Signals
	8.1.3.6 Selecting An Adequate Timecode Signal


	8.2 Access Time Considerations
	8.2.1 PCI Cards
	8.2.1.1 PCI Express Limitations
	8.2.1.2 API Calls available for Meinberg PCI Cards
	8.2.1.3 Circumventing PCI Access Times

	8.2.2 Native Serial Port
	8.2.3 USB Devices
	8.2.4 Fiber Optic

	8.3 Time Resolution Considerations
	8.4 Disciplined vs. Undisciplined Oscillator Considerations
	8.5 Hardware PPS Considerations
	8.6 Meinberg's Approach to PTP Client PCI Cards

	9 Distributing Reference Time to Computers
	10 Time Synchronization Problems with Virtual Machines
	10.1 General Information
	10.2 VMWare
	10.3 XEN
	10.4 Microsoft Hyper-V

	11 Potential RTC Problems on Dual Boot Systems
	12 Time Synchronization Problems Under Windows
	12.1 Timer Tick Interpolation Problems
	12.2 Latency Problems Affecting the Windows System Time
	12.3 Small System Time Adjustments May Be Lost
	12.4 Polling Intervals With NTP For Windows
	12.5 Possible Problems in a Windows Active Directory Domain


