

FTT Analyzer

C-50000 Series

Innovative features in a tough body

ONOSOKKI

The right tool for quickly making decisions and A reliable partner that accepts no compromise.

Portable FFT analyzer

CF-9200
 CF-9400

[For 2-channel analysis]
[For 4-channel analysis]

Speedy

Keys and a touch panel for quick, light and intuitive operation
With the CF-9200/9400, basic FFT analysis operations such as display, measurement, stopping, recording and readout can be made positively and quickly through the large hard keys. The touch panel provides an intuitive interface, allowing the operator to easily perform a range of operations with a swipe or pinch, such as selecting the number of waveforms displayed and extending or shortening the X and Y axes to the desired scale.

CF-9400
CF-9200

Flexible

5 hours of continuous, cordless operation. Replacement of batteries while powered on
With the CF-9200/9400, the two on-board, large-capacity lithium ion secondary batteries enable continuous cordless operation of up to 5 hours. The hot-swap feature allows the batteries to be replaced while the unit is powered on, enabling the analysis or recording operation to continue while eliminating the need for resetting. The unit can also be recharged while in operation.*
*Full recharge takes 8 to 9 hours with the power on and 4.5 to 5 hours with the power off.

taking action.

The CF-9200 and CF-9400 are an all-in-one portable FFT analyzer. All FFT analysis operations can be performed with the integrated hard keys and capacitance type touch panel without requiring an external PC for analysis.

The new, exclusively developed 100 kHz high-performance analysis front-end system incorporating a 24-bit A/D converter enables easier and more reliable analysis than earlier models of noise and vibration generated by plant lines, pumps, motors, automobiles, railway vehicles, home electrical appliances and devices, and electrical and electronic parts. The CF-9200 and CF-9400 also offer solutions for field workers in their FFT analysis, including the resonance and frequency characteristics of mechanical structures in a vibrating environment with electromagnetic exciters and impulse hammers.

Versatile

FFT, RTA, excitation control \& simultaneous recording
The unit is compact but versatile, capable of carrying out a range of operations from FFT analysis, real-time octave analysis (RTA)*1 and rotational tracking analysis*2, to linear/log sweep analysis using signal output and amplitude control of electromagnetic exciter*3. The unit can also perform simultaneous analysis and recording operations, allowing offline analysis using the CF-9200/9400 main machine and software applications.
*1 Octave Analysis (CF-0923) is required.
*2 Tracking Analysis (CF-0922) is required.
*3 Log Sweep Analysis/Excitation Control (CF-0942) is required.

Quiet

No fans or spindles means no noise or vibration
The CF-9200/9400 offer high performance without fans or spindles. The units do not produce mechanical noise or vibration, and so cannot be a source of noise or vibration in acoustic or vibration measurement/recording locations.

Dynamic and steady with innovative and robust CF-9200 / 9400

Real-time tripartite graph display

The CF-9200 / CF-9400 are equipped with real-time tripartite graph* display as a new standard function. Three amplitude values (acceleration ($\mathrm{m} / \mathrm{s}^{2}$), velocity (m / s) and displacement (m)) at any arbitrary frequency can be read simultaneously in real time during FFT analysis of vibration.
You do not need to operate individually for differential and integral processing and convert amplitude values using the frequency analysis function as before. Therefore, this function enables you to read three amplitude values quickly.
*The tripartite graph (diagram) enables you to read amplitude values of acceleration ($\mathrm{m} / \mathrm{s}^{2}$) and displacement (m) which is based on velocity (m / s), on the frequency (Hz) axis.

Wide dynamic range

The CF-9200/9400 feature a new 24-bit A/D front-end system, offering more than 120 dB wide dynamic range. This eliminates the need for voltage range change which otherwise needs to be frequently performed in acoustic or vibration measurement. Measuring and data recording do not need to be repeated, making measurement and analysis much more efficient and the FFT analyzer easier to operate even for novices.

Isolated inputs

With the CF-9200/9400, all signal input channels are isolated (insulated). Highly resistant to ground loops and noise, the unit offers highly reliable measuring performance in locations prone to potential difference. The isolation scheme also protects the crucial areas of the FFT system from sensors or signals that can be exposed to harmful transient voltages.

CF-9400

CF-9200

Equipped with CCLD*1, applicable to TEDS*2

Each channel is equipped with CCLD (power supply for sensors) which can directly drive an accelerometer with built-in preamplifier, a charge converter for charge output type accelerometer, and a measurement microphone.
 TEDS reads data retained in a TEDS sensor and then automatically supplies the power to the sensor and performs unit calibration.
*1 What is CCLD (Constant Current Line Drive)? It means a sensor interface using constant current supply. CCLD from an accelerometer with built-in preamplifier or a microphone preamplifier enables direct connection to an FFT Analyzer without using external amplifier. 2 to 4 mA of CCLD is commonly used.
*2 What is TEDS (Transducer Electronic Data Sheet)? It is a standardized method which contains information relevant to a measurement sensor. It is defined in the IEEE 1451 series.
As information of a TEDS sensor is automatically read to the TEDS available measurement devices, the user is ready to take measurements. It can avoid setting error and also saves you time and effort of troubling calibration and measurement preparation.

features.

Easy operation through a touch panel interface

The CF-9200/9400 employ a 10.4 LCD capacitance type touch panel, allowing the operator to pinch and swipe graphs. The band or gain of your choice can be widened or narrowed with a simple and intuitive action.

Reliable inputs with the new hard keys

With the CF-9200/9400, operations such as turning the power on and off, changing data types and saving data are carried out using the new large hard keys. The positive feel of these keys assists fast and correct input even in unstable or confined sites, helping to prevent failures to save data and malfunctions caused by inadvertent inputs.

Highly visible LED indicators

The statuses of major FFT operations are shown by LED indicators. The hard keys for major functions also have LED indicators. This enables the operator to monitor FFT operations even from a distance, such as the power-up process, the charge status of the secondary batteries and the excessive input to an A/D converter.

Channel and waveform selection (CF-9400)

Basic operations

From the laboratory to the field, real-time wave and simultaneous waveform recording can be

CF-9200 / 9400

FFT basic analysis function

Time waveform

Performs A/D conversion of the voltage signal of vibration, noise, strain, voltage probe, etc. coming from a sensor and then displays the result as time-domain data. The X and Y -axis values at any point can directly be read using the search cursor. The delta cursor function makes it easier to read the time difference and level difference. The time-axis data statistical processing function enables quantitative time waveform analysis and diagnosis of such items as mean value (MEAN), root mean squared value (RMS) and crest factor.

Power spectrum

The power spectrum in FFT analysis shows the magnitudes of frequency components of a sampled time waveform, in the form of a graph indicating the power for each frequency band (frequency resolution $\Delta \mathrm{f}$) on the horizontal axis.
Power spectrum analysis enables detection of abnormal conditions of a facility, which are difficult to estimate through measurement of vibration and noise level and observation of time waveform. The natural frequency of a structure can also be measured.

Frequency response function

At the frequency response function (FRF), in a mechanical system or an electrical circuit, the input-to-output ratio is shown in gain and phase characteristics with the X axis representing frequency. The gain characteristics indicate how the amplitude of input signals changes as they pass through the transfer system being evaluated. The ratio of the output amplitude to the input amplitude is plotted on the Y axis. The phase characteristics indicate phase advance/delay between the input and output signals with the Y axis plotted in degrees or radians.

form measurement / analysis achieved with just one unit.

CF-9200 / 9400

Optional software for analysis

Tracking Analysis (CF-0922)

For rotating machines such as engines and motors that have a wide range of operating speed, resonance caused by the natural frequencies of the machine parts and specific operating speeds can be a serious problem. The Tracking Analysis software (CF-0922) clearly presents in visual form which speeds of the rotating machine have increased noise and vibration and which parts of the machine are contributing to the problem.

Octave Analysis (CF-0923)

The highest note of an octave has twice the frequency of the octave's lowest note. As the feeling of human hearing has characteristics in equal ratio to frequencies, the Octave Analysis software (CF-0923) is an effective tool for noise analysis. By using $1 / 1$ and $1 / 3$ octave bandpass filters, it is capable of generating the sound pressure level of each band of the frequency range of the noise being measured.

Log Sweep / Excitation Control (CF-0942)

The Log Sweep function is used to evaluate the resonance points of a transfer system by continuously changing the frequency of the driving sine waves from the 1ch Signal Output Module (CF-0971). By sine-sweeping the frequency axis with a logarithmic scale, it is possible to obtain the gain and phase for each single frequency and an accurate response function with a high S / N ratio. The Excitation Control limits the amplitude of an electromagnetic exciter to a desired range, enabling vibration testing without having to consider the frequency characteristics of the exciter.

System configurations

From detection to analysis and processing. The CF-9200/9400 are supported by a wide range of peripherals including sensors for excitation, sound, vibration and rotation.

1. Input Section

Number of input channels	2 channels

(CF-9200)
(CF-9400)
Input connector
Input configuration
Isolation
$\frac{\text { Input impedance }}{\text { Input coupling }}$
$\frac{\text { Input coupling }}{\text { Power supply for sensor }}$
(CCLD)
Cable disconnection
detecting function
TEDS function
Absolute maximum input
voltage
$\frac{\text { Input voltage range }}{\text { DC offset }}$
Input level monitor
Frequency range
A/D converter
Dynamic range
Amplitude flatness
Harmonic distortion
Aliasing
Full-scale accuracy
Amplitude linearity
Channel to channel
cross-talk
Channel to channel gain

Channel to channel
phase accuracy
Anti-aliasing filter Digital filter

BNC (CO2 type)
Single-ended
$+24 \mathrm{~V} / 4 \mathrm{~mA}$
and force sensor

24 bit $\Delta \Sigma$ type
120 dB or more
-80 kHz or more
-80 dB or less

Isolated between each channel (permanently)
$1 \mathrm{M} \Omega \pm 0.5 \%, 100 \mathrm{pF}$ or less
DC or $\mathrm{AC}(0.5 \mathrm{~Hz}-3 \mathrm{~dB} \pm 10 \%)$

Automatically detects cable disconnection when using CCLD
Accepts IEEE1451.4 Template ver. 1.0 based accelerometer
70 Vrms AC for 1 minute (50Hz)
1 Vrms, 31.62 Vrms (2 ranges)
-60 dB F.S. or less (When auto zero is on)
Lights up in red LED at excessive input. (Lights up in red for a range F.S.)
DC to 100 kHz
(At FFT frame length 4096 points or more and 1 kHz or more)

Less than 20 kHz	$\pm 0.1 \mathrm{~dB}$
20 kHz or more	$\pm 0.2 \mathrm{~dB}$

20 kHz or more	± 0.2
Less than 20 kHz	-80 dB
20 kHz ar	-75 l

Less than 20 kHz	-80 c
20 kHz or more	-75 c

$-75 \mathrm{~dB}$
$\pm 0.1 \mathrm{~dB}$ (At 1 kHz)
$\pm 0.0015 \%$ (At full scale)

	Less than 20 kHz	$\pm 0.05 \mathrm{~dB}$	
	20 kHz or more (Measured in the same voltage range)	$\pm 0.1 \mathrm{~dB}$	
	Less than 20 kHz	$\pm 0.3 \mathrm{deg}$	
20 kHz or more	$\pm 0.7 \mathrm{deg}$		

3. Operation Section

Power switch	Power ON: Press and hold the switch more than 1 second	Power OFF: Press and hold the switch until a beep is made. After the beep, lift the finger off to the power OFF. When the switch is pressed continuously, the power is forcibly OFF.
Operation keys (Soft keys)	Detailed settings for each function can be performed by soft keys lower on the LCD display	
Operation keys (Direct keys)	Cursor \& selector key	Right and left, up and down, SEARCH, \triangle SET, ESC
	Switches of measurement	SCHED, TRIG ON, AVG, START, STOP etc.
	Waveform selector	TIME, SPECT, PHASE, FRF, COH, C-SPECT, SELECT
	Misoperation preventing function	Hold and press SELECT to lock, unlock the soft key \& direct key (excluding power switch).
	Printing key	PRINT: Enables printing with the specified conditions directly.
	Auto sequence play key	AUTO SEQ: Reproduces the registered continuous operation content
	Frequency range selector key	FREQ right and left
	Y-axis scale selector key	Y SCALE up and down
	Signal output ON/OFF	SIGNAL OUT (Available when the CF-0971 option is installed.)
4. Analysis Section		
Frequency range	100 mHz to 100 kHz	
Frequency accuracy	$\pm 0.005 \%(\pm 50 \mathrm{ppm})$ of the reading values	
Sampling frequency	Frequency range $\times 2.56$ (Internal sampling)	
Number of sampling points / analysis points	Number of Sampling points	Number of Analysis points
	256	100
	512	200
	1024	400
	2048	800
	4096	1600
	8192	3200
	16384	6400
Overlap processing	MAX/66.7\%/50\%/0\%/ optional setup	
Window function	Rectangular/hanning/flat-top/force/exponential/user-defined	
Delay function	With reference to channel 1 , time frame of other channels can be delayed by 0 to 8191 points.	
Time waveform processing function	First and second order differentials/single and double integrals	
	Absolute value conversion/DC cancel/trend elimination/smoothing	
FFT real-time rate Averaging function	$100 \mathrm{kHz} / 4 \mathrm{ch}$ (Internal sampling: FFT frame length 2048 points or less)	
	Number of averaging setup	1 to 65535 times
	Averaging setup time	0.1 to 999.9 seconds
	Averaging can be stopped in terms of the number of times or time	
	Time domain	Summation average / exponential average
	Frequency domain	Summation average / exponential average / peak hold / subtraction average
		Sweep average / Fourier average / Max OA
	Amplitude domain	Summation average
	A/D-over cancel / double hammer cancel / averaging undo function	
Trigger function	Green LED (TRIG'D) blinks when triggered	
	Trigger level	-99 to 99 (Unit: \%) Default: 25 \%
	Hysteresis level	0 to 99 (Unit: \%) Default: 2 \%
	Position	± 8191
	Mode	Free/repeat/single/one-shot
	Source	Ch1/Ch2 (CF-9200) to Ch3/Ch4 (CF-9400)/ external trigger input
	Slope	$+/-/ \pm$ (Internal trigger) +/- (External trigger)
FFT calculation	32-bit floating point (IEEE single-precision format)	

5. Processing Functions

Time domain	Time waveform/auto-correlation function/cross-correlation function/ impulse response/cepstrum
Amplitude domain	Amplitude probability density function/amplitude probability distribution function
Frequency domain	Power spectrum/Fourier spectrum/liftered spectrum/cross spectrum/ frequency response function/coherence function/coherence output power
Calculation function (Time-axis statistical processing)	Mean value/absolute mean value/rms value/standard deviation/ maximum value/minimum value/crest factor/skewness/kurtosis

2. Display Unit

Size	10.4 -inch
Resolution	800×600 dots
Method	TFT color LCD with capacitance type touch panel
Brightness adjustment	2 levels (Bright/dark)
Lighting (Back light)	LED

Optional Software Specifications

Log Sweep Analysis/Excitation Control CF-0942	
Measurement mode (FRA mode)	
Measurement frequency range	
Frequency resolution (Log sweep)	
Frequency resolution (Linear sweep)	
10, 20, 40, $100,80,100,120,160,200,250,300,320,400,500$ lines/decade	
Number of averaging	
Frequency range dividing setup mode	
100, 200, 400, 500, 800, 1000, 2000, 2500, 4000,5000 lines/all band of the measurement frequency range	
Frequency resolution auto adjusting function	
Frequency resolution increase function	
Addition times and signal output level can be changed for each measurement frequency range which is divided	
(into up to 10).	
Automatically adjusts the decade of each frequency band and resolution to see the frequency characteristics accurately.	
Display	
Recalculates the specified frequency range with 20 times to the resolution at the measurement.	

Tracking Analysis CF-0922	
Tracking analysis type	Phase
	Amplitude
Sampling method	Constant ratio tracking (External sampling):
	Up to maximum frequency analysis order
	Constant width tracking (Internal sampling):
	Frequency range is the same as that of FFT analysis
Number of FFT sampling points	256 to 16384 points (Power-of-two step)
Averaging function	Power spectrum exponential mean
	Fourier spectrum exponential mean
Max. analysis orders	$6.25,12.5,25,50,100,200,400,800$
Max. number of blocks	100, 200, 400, 800, 1000
Analysis screen display	6 screens/list display of tracking available
Number of display tracking diagrams	8 lines (Excluding MAX ord, O.A)
Schedule function	Rotation schedule (With automatic judging of decreasing rotation speed)
	Time schedule (Time trend)
Upper and lower limitation setting of rotation times	UP (Lower limit \rightarrow upper limit)
	DOWN (Upper limit \rightarrow lower limit)
	UP/DOWN (Lower limit \rightarrow upper limit \rightarrow lower limit)
	DOWN/UP (Upper limit \rightarrow lower limit \rightarrow upper limit)
Simultaneous recording \& analysis function	Available for constant-width tracking

Octave Analysis CF-0923	
Octave type	1/1 octave
	1/3 octave (Filter: 6th Butterworth)
	JIS C 1514: 2002 Class 1, IEC 61260 Ed.1.0 (1995)
	Class 1
	ANSI S1.11: 2004 Class 1
Time weighting (Time constant)	$10 \mathrm{~ms}, 35 \mathrm{~ms}, 125 \mathrm{~ms}$ (FAST)
	$630 \mathrm{~ms}, 1 \mathrm{~s}$ (SLOW), 8 s ,
	IMPULSE rising $35 \mathrm{~ms} /$ falling 1.5 s
	JIS C 1509-1: 2005 Class 1, IEC 61672-1: 2002 Class 1
Analysis frequency range	0.8 to 20 kHz ($1 / 3$ octave)
	1 to 16 kHz ($1 / 1$ octave)
Calculation function	Instantaneous value, maximum value of every one
	second, maximum value hold, and minimum value hold.
	Power averaging value, power summation value, linear Leq
Analysis screen display	Up to 6 screens (Data overlay display available)
	List display of real-time octave display
Simultaneous recording	Available
\& analysis function	
Option	CF-0922 (Tracking Analysis)

CF-9200

* Option: BNC (CO2 type) is fixed in when CF-0971 (1CH Signal Output Module) is installed

CF-9400

* Option: BNC (CO2 type) is fixed in when CF-0971 (1CH Signal Output Module) is installed

Soft Carrying Case CC-0025

Hard Carrying Case CC-0091

*All product names and model names are trademarks or registered trademarks of each individual company. The copyrights are reserved by each individual company.

ono Sokki

WORLDWIDE ONO SOKKI CO., LTD.
1-16-1 Hakusan, Midori-ku, Yokohama, 226-8507, Japan Phone : +81-45-935-3918 Fax :+81-45-930-1808 E-mail : overseas@onosokki.co.jp

THAILAND

Ono Sokki (Thailand) Co., Ltd.
1/293-4 Moo. 9 T.Bangphud A.Pakkred

Nonthaburi 11120, Thailand
Phone : +66-2-584-6735
Fax : +66-2-584-6740

E-mail : sales@onosokki.co.th

INDIA

Ono Sokki India Private Ltd.
Unit No.4B, Ground Floor, Tower-A, Spazedge, Sector 47, Gurgaon-Sohna Expressway, Gurgaon, Haryana-122002, INDIA
Phone :+91-124-421-1807
Fax : +91-124-421-1809
E-mail : osid@onosokki.co.in

* Outer appearance and specifications are subject to change without prior notice URL: http://www.onosokki.co.jp/English/english.htm

U.S.A.

Ono Sokki Technology Inc
2171 Executive Drive, Suite 400 Addison, IL. 60101, U.S.A. Fax : +1-630-627-97-0004 E-mail : info@onosokki.net http://www.onosokki.net

P.R.CHINA

Ono Sokki Shanghai Technology Co., Ltd.
Room 506, No. 47 Zhengyi Road, Yangpu
District, Shanghai, 200433, P.R.C.
Phone : +86-21-6503-2656
Fax : $+86-21-6506-0327$
E-mail : admin@shonosokki.com

