ELECTRONIC LOAD SELECTION GUIDE

Series		PLZ-4W	PLZ-4WL	PLZ-4WH	PLZ-U
Line up		6 models	1 model	4 models	4 models
Features		Multi Functional	High Speed	High Voltage	Multi Channel
Input		DC	DC	DC	DC
Mode	CC	\checkmark	\checkmark	\checkmark	\checkmark
	$\mathrm{CC}+\mathrm{CV}$	\checkmark	\checkmark	\checkmark	\checkmark
	CR	\checkmark	\checkmark	\checkmark	\checkmark
	CR+CV	\checkmark	\checkmark	\checkmark	\checkmark
	CV	\checkmark	\checkmark	\checkmark	\checkmark
	CP	\checkmark	\checkmark	\checkmark	
Input rating (Max.)		165 W/330 W/ 660 W/1000 W	330 W	165 W/330 W/1000 W	75 W/150 W
		150 V	30 V	650 V	150 V
		200 A	100 A	50 A	30 A
Zero Voltage Input		Available	-	-	Available
GPIB		Standard	Standard	Standard	Standard
RS-232C		Standard	Standard	Standard	Standard
USB		Standard	Standard	Standard	-

Rated Current $-12 \mathrm{~A} / 30 \mathrm{~A} \quad 90 \mathrm{~A}-$ Max. Current in Parallel Operation

| Max. Input Current | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | 10 | 30 | 50 | 100 | 200 | 400 | 1000 | 1800 | 2000 |
| Voltage | | | | | | | | | |

Multifunctional Electronic Load (CC/CV/CR/CP)

PLZ-4W Series

(Us) (civ) (Em) C

Dimensions

Type I :214.5(8.44")W $\times 124\left(4.88^{\prime \prime}\right) \mathrm{H} \times 400\left(15.75^{\prime \prime}\right) \mathrm{Dmm}$
Type II :429.5(16.91")W $\times 128\left(5.04^{\prime \prime}\right) \mathrm{H} \times 400\left(15.75^{\prime \prime}\right) \mathrm{Dmm}$

Accessories

Setup Guide, Quick Reference (1 each for English and Japanese), CD-R (Contains the User's Manual and the Communication Interface Manual), Input power cable (with a SVT3 18 AWG 3 P plug, 2.4 m), Load input terminal cover, Lock plate (2 pcs.), Load input terminal bolt, nut and spring washer (2 sets)

Functions

\square High-speed response and variable slew-rate
Lately the Electronic Load has been required to apply faster response to comply with such as DC/DC converters with high-speed performance.
With PLZ-4W Series, it realizes a faster response of rise/fall time as calculated conversion value with $10 \mu \mathrm{~s}$, and enabling a transient response test for the direct current and accurate reproduction of a simulation waveform as a dummy load. In addition, instead of the conventional rise/fall time settings, it also can be set with a slew rate $(\mathrm{A} / \mu \mathrm{s})$. As for the setting value, it can be varied continuously, and be possible to optimize transient control for voltage drops due to wiring inductance, constant-voltage power supply, etc., when the load current is switched on.

[^0][^1]
Suitable design for fuel cell, faster speed and lower voltage testing application of various devices!

The PLZ-4W Series Electronic Load unit is a multifunctional system designed to offer the highest levels of reliability and safety with operation function of constant voltage, constant current, constant power and constant resistance mode. And its control unit comes with GPIB, RS232C and USB as standard interface. The PLZ-4W Series are available in 5 models and which a 0 V input operating voltage is available in 2 models (PLZ164WA, PLZ664WA) suited to meet with the testing demands for the Fuel Cell, DC/DC converter, SW Power Supply, and any other devices required for the lower operating voltage application. The PLZ664WA offers the 132 A at 0 V input as a largest current rating in its class. (33 A for model PLZ164WA) Furthermore, the PLZ-4W features high speed slew rate when switching, it can be used as simulating load for the characteristic, performance, life cycle, aging test in the field of application in Automobile electronics, SW Power Supply manufacturer, Secondary Battery.
To achieve large capacity for testing application at low cost, the PLZ1004W can be expanded up to 9 kW by using the 2 kW booster unit (PLZ2004WB).

Features

Equipped with 6 operation modes (CC, CR, CV, CP, CC+CV, CR + CV)
■ 0 V input operating voltage type model is available (PLZ164WA, PLZ664WA)

- For transient switching operations, it is possible to set a slew rate (A/ $/ \mathrm{s}$)

Equipped with various types of protection circuits: Over Voltage Protection(OVP), Over Current Protection(OCP), Over Power Protection(OPP), Over Heat Protection(OHP), Under Voltage Protection(UVP), And Reverse Connection Protection(REV)
■ GPIB/RS232C/USB are standard interface

■ V input

The PLZ164WA and PLZ664WA permit a load input up to the rated current even when the Input Voltage is set for 0 V . This is an absolute required specification for single cell tests of the fuel cells. Also, because of the low power consumption and scaling down of semi-conductor processes, semi-conductor devices are experiencing further voltage reductions. The Load can meet with these applications of power evaluation test. Higher precision is offered for current settings. Resolutions in micro currents are ensured by 3-range configuration. (Resolving power $10 \mu \mathrm{~A}$ set with L range of PLZ164W and PLZ164WA is possible) Further, each display for the voltmeter, ammeter, and wattmeter now uses a 5digit display.

- Sequence function

Sequence patterns set as you requested can be saved in the built-in memory. In the sequence program, 10 normal sequences and 1 first sequence can be saved. 256 steps of normal sequences, and 1,024 steps of the first sequence can be saved in each program.
Simple editing is possible using the large liquid crystal display (LCD).

Convenient function for discharging test of cells

The PLZ4W can measure the time from load-on to load-off. When combined with under voltage protection (UVP) function, the time from when the battery discharge is started until the battery voltage falls to the cutoff voltage can be measured. Also, you can set the timer so it will load-off automatically after a specified time elapses from load-on mode. Once this timer is set, the input voltage value immediately before load-off is displayed, so it is possible to measure the closed circuit voltage after a specified time elapses from the start of discharging battery.

Booster unit PLZ2004WB*

To achieve a large capacity system at low cost, the PLZ1004W has an expandable option PLZ2004WB as a booster unit.
Using one unit of PLZ1004W as a master unit, a maximum of 4 booster units can be parallel connected. (Max. $9 \mathrm{~kW}, 1800 \mathrm{~A}$)
*PLZ2004WB(Booster unit) can be used for the PLZ1004W only. It cannot be connected and used with any other model.

Parallel operation

Under parallel operation, the same model can be parallel connected to a maximum of 5 units when booster unit is not used. (Max. 5 kW , 1000 A)

PC01-PLZ-4W: The cable for Boosters and Master/Slave units.
PC02-PLZ-4W: The cable for between Master unit and Booster unit.

Options

- Accessory Kit

OP01-PLZ-4W
(used for the connection of J 1 connector on the rear panel when operating by external control)

- Connector, Semi-cover, Pin 20 pcs.

Sequence Creation Software Wavy for PLZ-4W

- Parallel Operation Cable PC01-PLZ-4W
(for boosters and master/slave units, 300 mm)
PC02-PLZ-4W
(for between master unit and booster unit, 550 mm)

[NOTICE] PLZ-164WA and PLZ664WA

- Operating voltage is secured by the input node of the load device. Please select load wiring that does not make input node voltage of the load device become 0 V or less. In addition, this equipment detects non-input. It detects noninput and stops electric current when the input node voltage of the load device is 0.3 V or less and input current is approximately 1% of the current rating or less. - PLZ164WA and PLZ664WA are equipped with bias supply inside. In the case of supply for which diode is arranged from minus output to plus output, such as switching supply, an electric current flows from the bias supply to the diode and an alarm for reverse connection occurs when turning off the output of the supply under test while this equipment is loaded on.
- Because a noise filter is used for the primary input for PLZ164WA and PLZ664WA, the leakage breaker, etc. may be activated, depending on the environment of the input power, when using multiple quantities of them at the same time. Therefore, we provide models for customers who are planning to use multiple devices at the same time. If you have any other questions, please contact our sales department for details.

PLZ-4W Series Specifications

Unless specified otherwise, the specifications are for the following settings and conditions.

- The warm-up time is 30 minutes (with current flowing)
- After warm-up is complete, the PLZ-4W must be calibrated correctly according to the procedures given in the operation manual in a $23{ }^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$ environment.
- ** \% of set denotes ** \% of the input voltage, input current, or input power setting.
- ** $\%$ of $f . s$ denotes ${ }^{* *} \%$ of the rated input voltage, rated input current, or rated input power.
- **\% of rdg represents denotes ** \% of the input voltage, input current, or input power reading

Model			PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Rating							
Operating voltage (DC)			1.5 V to 150 V *1			0 V to 150 V *2	
Current			33 A	66 A	200 A	33 A	132 A
Power			165 W	330 W	1000 W	165 W	660 W
Minimum start voltage *3			0.3 V or greater				
CC mode							
Operating range	Range	H	0 A to 33 A	0 A to 66 A	0 A to 200 A	0 A to 33 A	0 A to 132 A
		M	0 A to 3.3 A	0 A to 6.6 A	0 A to 20 A	0 A to 3.3 A	0 A to 13.2 A
		L	0 A to 330 mA	0 A to 660 mA	0 A to 2 A	0 A to 330 mA	0 A to 1.32 A
Setting range	Range	H	0 A to 34.65 A	0 A to 69.3 A	0 A to 210 A	0 A to 34.65 A	0 A to 138.6 A
		M	0 A to 3.465 A	0 A to 6.93 A	0 A to 21 A	0 A to 3.465 A	0 A to 13.86 A
		L	0 A to 346.5 mA	0 A to 693 mA	0 A to 2.1 A	0 A to 346.5 mA	0 A to 1.386 A
Resolution	Range	H	1 mA	2 mA	10 mA	1 mA	10 mA
		M	0.1 mA	0.2 mA	1 mA	0.1 mA	1 mA
		L	0.01 mA	0.02 mA	0.1 mA	0.01 mA	0.1 mA
Accuracy of setting	Range	H, M	$\pm(0.2$ \% of set $+0.1 \%$ of f.s 11$)+\operatorname{Vin} * 2 / 500 \mathrm{k} \Omega$				
		L	$\pm(0.2$ \% of set +0.1 \% of f.s)				
Input voltage variation*3	Range	H	2 mA	4 mA	10 mA	2 mA	8 mA
		M	2 mA	4 mA	10 mA	2 mA	8 mA
		L	0.1 mA	0.2 mA	0.6 mA	0.1 mA	0.4 mA
Ripple		rms *4	3 mA	5 mA	20 mA * 6	7.5 mA	$30 \mathrm{~mA}{ }^{*}$
		p-p *5	30 mA	50 mA	$100 \mathrm{~mA}^{*} 6$	50 mA	$200 \mathrm{~mA}^{*} 6$
CR mode							
Operating range *1	Range	H	$\begin{gathered} 22 \mathrm{~S} \text { to } 400 \mu \mathrm{~S} \\ (45.455 \mathrm{~m} \Omega \text { to } 2.5 \mathrm{k} \Omega) \end{gathered}$	44 S to $800 \mu \mathrm{~S}$ ($22.727 \mathrm{~m} \Omega$ to $1.25 \mathrm{k} \Omega$)	133.332 S to 2.4 mS ($7.5 \mathrm{~m} \Omega$ to 416.666Ω)	$\begin{gathered} 22 \mathrm{~S} \text { to } 400 \mu \mathrm{~S} \\ (45.455 \mathrm{~m} \Omega \text { to } 2.5 \mathrm{k} \Omega) \end{gathered}$	88 S to 1.6 mS ($11.363 \mathrm{~m} \Omega$ to 625Ω)
		M	$\begin{gathered} 2.2 \mathrm{~S} \text { to } 40 \mu \mathrm{~S} \\ (454.55 \mathrm{~m} \Omega \text { to } 25 \mathrm{k} \Omega) \end{gathered}$	$\begin{gathered} 4.4 \mathrm{~S} \text { to } 80 \mu \mathrm{~S} \\ (227.27 \mathrm{~m} \Omega \text { to } 12.5 \mathrm{k} \Omega) \end{gathered}$	13.3332 S to $2420 \mu \mathrm{~S}$ ($75 \mathrm{~m} \Omega$ to $4.1666 \mathrm{k} \Omega$)	$\begin{gathered} 2.2 \mathrm{~S} \text { to } 40 \mu \mathrm{~S} \\ (454.55 \mathrm{~m} \Omega \text { to } 25 \mathrm{k} \Omega) \end{gathered}$	8.8 S to $160 \mu \mathrm{~S}$ $(113.63 \mathrm{~m} \Omega$ to $6.25 \mathrm{k} \Omega)$
		L	$\begin{gathered} 0.22 \mathrm{~S} \text { to } 4 \mu \mathrm{~S} \\ (4.5455 \Omega \text { to } 250 \mathrm{k} \Omega) \end{gathered}$	0.44 S to $8 \mu \mathrm{~S}$ (2.2727 Ω to $125 \mathrm{k} \Omega$)	$1.33332 \mathrm{~S} \text { to } 24 \mu \mathrm{~S}$ $(750 \mathrm{~m} \Omega \text { to } 41.666 \mathrm{k} \Omega)$	0.22 S to $4 \mu \mathrm{~S}$ (4.5455Ω to $250 \mathrm{k} \Omega$)	$\begin{gathered} 0.88 \mathrm{~S} \text { to } 16 \mu \mathrm{~S} \\ (1.1363 \mathrm{~m} \Omega \text { to } 62.5 \mathrm{k} \Omega) \end{gathered}$
Setting range	Range	H	$\begin{gathered} 23.1 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (43.290 \mathrm{~m} \Omega \text { to } \mathrm{OPEN}) \end{gathered}$	$\begin{gathered} 46.1 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (21.692 \mathrm{~m} \Omega \text { to OPEN }) \end{gathered}$	139.9968 S to 0 S ($7.1430 \mathrm{~m} \Omega$ to OPEN)	23.1 S to 0 S ($43.290 \mathrm{~m} \Omega$ to OPEN)	92.4 S to 0 S ($10.822 \mathrm{~m} \Omega$ to OPEN)
		M	2.31 S to 0 S ($432.9 \mathrm{~m} \Omega$ to OPEN)	$\begin{gathered} 4.61 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (216.92 \mathrm{~m} \Omega \text { to } \mathrm{OPEN}) \end{gathered}$	13.99968 S to 0 S ($71.430 \mathrm{~m} \Omega$ to OPEN)	2.31 S to 0 S ($432.9 \mathrm{~m} \Omega$ to OPEN)	9.24 S to 0 S ($108.22 \mathrm{~m} \Omega$ to OPEN)
		L	0.231 S to 0 S (4.329Ω to OPEN)	$\begin{aligned} & 0.461 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ & (2.1692 \Omega \text { to OPEN) } \end{aligned}$	1.399968 S to 0 S ($714.30 \mathrm{~m} \Omega$ to OPEN)	$\begin{aligned} & 0.231 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ & (4.329 \Omega \text { to OPEN }) \end{aligned}$	$\begin{aligned} & 0.924 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ & (1.0822 \Omega \text { to OPEN }) \end{aligned}$
Resolution	Range	H	$400 \mu \mathrm{~S}$	$800 \mu \mathrm{~S}$	2.424 mS	$400 \mu \mathrm{~S}$	1.6 mS
		M	$40 \mu \mathrm{~S}$	$80 \mu \mathrm{~S}$	$242.4 \mu \mathrm{~S}$	$40 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
		L	$4 \mu \mathrm{~S}$	$8 \mu \mathrm{~S}$	$24.24 \mu \mathrm{~S}$	$4 \mu \mathrm{~S}$	$16 \mu \mathrm{~S}$
Accuracy of setting *2	Range	H, M	$\pm(0.5 \%$ of set *3 $+0.5 \%$ of f.s * 4) $+\mathrm{Vin} / 500 \mathrm{k} \Omega$				
		L	$\pm(0.5 \%$ of set * $3+0.5 \%$ of f.s)				
CV mode							
Operating range	Range	H	1.5 V to 150 V			0 V to 150 V	
		L	1.5 V to 15 V			0 V to 15 V	
Setting range	Range	H	0 V to 157.5 V				
		L	0 V to 15.75 V				
Resolution	Range	H	10 mV				
		L	q				
Accuracy of setting	Range	H, L	$\pm(0.1$ \% of set + 0.1 \% of f.s)				
Input current variation*1			12 mV				
CP mode							
Operating range	Range	H	16.5 W to 165 W	33 W to 330 W	100 W to 1000 W	16.5 W to 165 W	66 W to 660 W
		M	1.65 W to 16.5 W	3.3 W to 33 W	10 W to 100 W	1.65 W to 16.5 W	6.6 W to 66 W
		L	0.165 W to 1.65 W	0.33 W to 3.3 W	1 W to 10 W	0.165 W to 1.65 W	0.66 W to 6.6 W
Setting range	Range	H	0 W to 173.25 W	0 W to 346.5 W	0 W to 1050 W	0 W to 173.25 W	0 W to 693 W
		M	0 W to 17.325 W	0 W to 34.65 W	0 W to 105 W	O W to 17.325 W	0 W to 69.3 W
		L	0 W to 1.7325 W	0 W to 3.465 W	0 W to 10.5 W	0 W to 1.7325 W	0 W to 6.93 W
Resolution	Range	H	10 mW	10 mW	100 mW	10 mW	20 mW
		M	1 mW	1 mW	10 mW	1 mW	2 mW
		L	0.1 mW	0.1 mW	1 mW	0.1 mW	0.2 mW
Accuracy of setting	Range	H, M	$\pm(0.6$ \% of set + 1.4 \% of f.s*1)				
		L	$\pm(0.6 \%$ of set + 1.4 \% of f.s)				

[rating]
*1 The minimum operating voltage (including the voltage drop due to the wire inductance component) in switching mode increases by 0.15 V per $1 \mathrm{~A} / \mu \mathrm{s}$ at slew rate settings greater than $5 \mathrm{~A} / \mu \mathrm{s}$.
*2 The minimum operating voltage (including the voltage drop due to the wire inductance component) in switching mode increases by 0.3 V per $1 \mathrm{~A} / \mu \mathrm{s}$ at slew rate settings greater than 5 $A / \mu \mathrm{s}$.
*3 Minimum voltage at which the current starts flowing to the PLZ-4W. (The PLZ-4W detects no signal at an input voltage less than or equal to approximately 0.3 V and an input current less than or equal to approximately 1 $\%$ of the range rating. Therefore, if the input voltage is gradually increased from 0 V , no current will flow until 0.3 V is exceeded. Once a current greater than or equal to 1% of the range rating starts flowing, the current can flow at voltages less than equal to 0.3 V .)

[CC mode]

*1 Full scale of H range
*2 Vin: Input terminal voltage of Electronic Load
*3 When the input voltage is varied from 1.5 V to 150 V at a current of rated power/150 V.
*4 Measurement frequency bandwidth: 10 Hz to 1 MHz
*5 Measurement frequency bandwidth: 10 Hz to 20 MHz
*6 At measurement current of 100 A

[CR mode]

*1 Conductance $[\mathrm{S}]=$ Input current $[\mathrm{A}]$ / input voltage $[\mathrm{V}]=1 /$ resistance $[\Omega]$
*2 Converted value at the input current. At the sensing point.
*3 set = Vin/Rset
*4 Full scale of H range

[CV mode]

*1 With respect to a change in the current of 10% to 100% of the rating at an input voltage of 1.5 V (during remote sensing).

[CP mode]

*1 Full scale of H range

PLZ-4W Series Specifications

Model			PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Meters							
Voltmeter	Range	H, M	0.00 V to 150.00 V				
		L			. 000 V to 15.000		
	Accuracy		$\pm(0.1$ \% of rdg +0.1 \% of f.s)				
Ammeter	Range	H, M	$\begin{gathered} 0.000 \mathrm{~A} \\ \text { to } 33.000 \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.000 \mathrm{~A} \\ \text { to } 66.000 \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~A} \\ \text { to } 200.00 \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.000 \mathrm{~A} \\ \text { to } 33.000 \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~A} \\ \text { to } 132.00 \mathrm{~A} \end{gathered}$
		L	$\begin{gathered} 0.00 \mathrm{~A} \\ \text { to } 330.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~A} \\ \text { to } 660.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.0000 \mathrm{~A} \\ \text { to } 2.0000 \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~A} \\ \text { to } 330.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.000 \mathrm{~A} \\ \text { to } 1.3200 \mathrm{~A} \end{gathered}$
Accuracy			$\pm(0.2$ \% of rdg +0.3 \% of f.s)				
Wattmeter*1	Range	H, M	$\begin{gathered} 0.00 \mathrm{~W} \\ \text { to } 165.00 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~W} \\ \text { to } 330.00 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 0.0 \mathrm{~W} \\ \text { to } 1000.0 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~W} \\ \text { to } 165.00 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~W} \\ \text { to } 660.00 \mathrm{~W} \\ \hline \end{gathered}$
		L*2	$\begin{gathered} 0.000 \mathrm{~W} \\ \text { to } 49.500 \mathrm{~W} \end{gathered}$	$\begin{gathered} 0.000 \mathrm{~W} \\ \text { to } 99.000 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~W} \\ \text { to } 300.00 \mathrm{~W} \end{gathered}$	$\begin{gathered} 0.000 \mathrm{~W} \\ \text { to } 49.500 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \mathrm{~W} \\ \text { to } 198.00 \mathrm{~W} \end{gathered}$
		L*3	$\begin{gathered} 0.0000 \mathrm{~W} \\ \text { to } 1.6500 \mathrm{~W} \end{gathered}$	$\begin{gathered} 0.0000 \mathrm{~W} \\ \text { to } 3.3000 \mathrm{~W} \end{gathered}$	$\begin{gathered} 0.000 \mathrm{~W} \\ \text { to } 10.000 \mathrm{~W} \end{gathered}$	$\begin{gathered} 0.0000 \mathrm{~W} \\ \text { to } 1.6500 \mathrm{~W} \end{gathered}$	$\begin{gathered} 0.0000 \mathrm{~W} \\ \text { to } 6.6000 \mathrm{~W} \end{gathered}$
Switching mode							
Operation mode			CC and CR				
Duty cycle setting			5 \% to 95 \%*1, 0.1 \% step				
Selectable frequency range			1 Hz to 20 kHz				
Frequency resolution	1 Hz to 10 Hz		0.1 Hz				
	10 Hz to 100 Hz		1 Hz				
	100 Hz to 1 kHz		10 Hz				
	1 kHz to 20 kHz		100 Hz				
Frequency accuracy of setting			$\pm(0.5$ \% of set)				
Slew rate							
Setting range *1	Range	H	$\begin{array}{r} 2.5 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 2.5 \mathrm{~A} / \mu \mathrm{s} \\ \hline \end{array}$	$\begin{gathered} 5 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 5 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	$16 \mathrm{~mA} / \mu \mathrm{s}$ to $16 \mathrm{~A} / \mu \mathrm{s}$	$\begin{aligned} & 2.5 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 2.5 \mathrm{~A} / \mu \mathrm{s} \\ & \hline \end{aligned}$	$10 \mathrm{~mA} / \mu \mathrm{s}$ to $10 \mathrm{~A} / \mu \mathrm{s}$
		M	$\begin{gathered} 250 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 250 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 500 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 500 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & 1.6 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 1.6 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{gathered} 250 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 250 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$1 \mathrm{~mA} / \mu \mathrm{s}$ to $1 \mathrm{~A} / \mu \mathrm{s}$
		L	$\begin{gathered} 25 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 25 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 50 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 50 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 160 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 160 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 25 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 25 \mathrm{~mA} / \mu \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} 100 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 100 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$
Resolution			See below.				
Accuracy of setting*2			$\pm(10 \%$ of set $+5 \mu \mathrm{~s}$)				
Slew rate resolution							
PLZ164W PLZ164WA	Setting		$\begin{gathered} 25 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 250 \mu \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 250 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 2.5 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 25 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 25 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 250 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{array}{r} 250 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 2.5 \mathrm{~A} / \mu \mathrm{s} \\ \hline \end{array}$
	Resolution		100 nA	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	1 mA
PLZ334W	Setting		$\begin{gathered} 50 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 500 \mu \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	$500 \mu \mathrm{~A} / \mu \mathrm{s}$ to $5 \mathrm{~mA} / \mu \mathrm{s}$	$\begin{gathered} 5 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 50 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 50 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 500 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & 500 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 5 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
	Resolution		200 nA	$2 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$	2 mA
PLZ664WA	Setting		$100 \mu \mathrm{~A} / \mu \mathrm{s}$ to $1 \mathrm{~mA} / \mu \mathrm{s}$	$\begin{gathered} 1 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 10 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 10 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 100 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & 100 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 1 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 10 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$
	Resolution		400 nA	$4 \mu \mathrm{~A}$	$40 \mu \mathrm{~A}$	$400 \mu \mathrm{~A}$	4 mA
PLZ1004W	Setting		$\begin{gathered} 160 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 1.6 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 1.6 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 16 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 16 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 160 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & 160 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 1.6 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{~A} / \mu \mathrm{s} \\ & \text { to } 16 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
	Resolution		600 nA	$6 \mu \mathrm{~A}$	$60 \mu \mathrm{~A}$	$600 \mu \mathrm{~A}$	6 mA
Soft start							
Operation mode			CC and CR				
Selectable time range			$1,2,5,10,20,50,100$, or 200 ms				
Time accuracy			$\pm(30 \%$ of set $+100 \mu \mathrm{~s})$				
Remote sensing							
Voltage that can be compensated			2 V for a single line				
Protection function							
Overvoltage protection (OVP)			Turns off the load at 110% of the rated voltage				
Overcurrent protection (OCP)			0.03 A to 36.3 A	0.06 A to 72.6 A	0.2 A to 220 A	0.03 A to 36.3 A	0.13 A to 145.2 A
			Or 110% of the maximum current of each range				
Overpower protection (OPP)			0.1 W to 181.5 W	0.3 W to 363 W	1 W to 1100 W	. 1 W to 181.5 W	0.6 W to 726 W
			Or 110% of the maximum power of each range Load off or limit selectable				
Overheat protection (OHP)			Turns off the load when the heat sink temperature reaches $95^{\circ} \mathrm{C}$				
Undervoltage protection (UVP)			Turns off the load when detected.				
			Can be set in the range of 0 V to 150 V or Off.				
Reverse connection protection (REV)			By diode and fuse. Turns off the load when an alarm occurs.				

[Meters]
*1 Displays the product of the voltmeter reading and ammeter reading.
*2 In a mode other the CP mode
*3 In CP mode
[Switching mode]
*1 The minimum time width is 10 $\mu \mathrm{s}$. Between 5 kHz and 20 kHz , the maximum duty cycle is limited by the mini-mum time width.
[Slew rate]
*1 In CC mode. The maximum slew rate of each range is $1 / 10$ th the value in CR mode.
*2 Time to reach from 10% to 90 $\%$ when the current is varied from 2% to 100% of the rated current.

PLZ-4W Series Specifications

[General Specifications]
*1 Only on models that have CE marking on the panel. Not applicable to custom order models.
*2 This instrument is a Class I equipment. Be sure to ground the protective conductor terminal of the instrument.
The safety of the instrument is not guaranteed unless the instrument is grounded properly.

Multifunctional Electronic Load (CC/CV/CR/CP)

PLZ334WL

Dimensions

214.5(8.44")W×124(4.88")H×400(15.75")Dmm

Accessories

Setup Guide, Quick Reference (1 each for English and Japanese), CD-R (Contains the User's Manual and the Communication Interface Manual), Power cord, Set of screws for the load input terminal (2 sets.), Load input terminal cover, Screws for the Input terminal cover (2 pcs.), Protection dummy plug for J1 terminal, Connecting cable to the chassis

Options

Low inductance cable
TL01-PLZ (50 cm) TL02-PLZ (1 m) TL03-PLZ (2 m)

■ Sequence Creation Software
Wavy for PLZ-4W

Large Current DC Electronic Load with Fast Slew Rate(50 A/ $\mu \mathrm{s}$)

While the PLZ334WL succeeds to the superior operability of our conventional model of the PLZ-4W series, the PLZ-4WL series realizes the fast rise and fall time (slew rate of $50 \mathrm{~A} / \mu \mathrm{s}$.) in the range of low voltage with large current. The PLZ-4WL offers six operation modes, and equips with various features such as sequence operation, switching operation, soft-start function, and time and voltage measurement. The PLZ-4WL applies not only for the conventional load test of the CPU power supply, but also it can be applied to even faster current response test. In addition, the PLZ-4WL is a space-saving design (about 50% less volume of the conventional model) that can save the facility space of the testing site, and it can be applied for the single cell testing of the large scale rechargeable battery.

Features

Full-Load Current of 100 A at 0.3 V !
Possible to operate as low as 50 mV of the input voltage
■ Realize the fast slew rate of $50 \mathrm{~A} / \mu \mathrm{s}$ at 2.3 V of the load input terminal voltage. (Rise/Fall time conversion: Approx. $2 \mu \mathrm{~s}$)
■ Current setting resolution: $50 \mu \mathrm{~A}$ (L range)

- 6 operation modes (CC, CR, CV, CP, CC+CV, CR + CV)
- Equipped with Sequence function and Switching function

■ Elapsed Time Display function and Auto Load-Off Timer function are convenient for the discharge tests of batteries.
■ GPIB/RS232C/USB are standard interface

- Available for input voltage range AC100 V to $120 \mathrm{~V} / 200 \mathrm{~V}$ to 240 V

Equipped with various protection functions (OVP, OCP, OPP, OHP, UVP, REV)
■ Optional Low Inductance cables are available exclusively for PLZ-4WL series.
■ Optional Sequence Creation Software (Wavy for PLZ-4W) is available

Functions

Fast Slew rate
Realize the slew rate of $50 \mathrm{~A} / \mu \mathrm{s}$ at 2.3 V of the load input terminal voltage.

- Realizing the low voltage operation Possible to operate as low as 50 mV by the input voltage. Even below the input voltage of 0.3 V , this product can be used by reducing the current.

Convenient feature for the discharge testing The Auto load-off timer and the Cut-off features can be applied to the discharge capacity measurement of the rechargeable battery

PLZ334WL Specifications

model			PLZ334WL
Rating	Operating voltage (DC)		0.3 V to 30 V
			Minimum operating voltage for the Switching mode(includes the value of voltage drop generated by the inductance component of wirings) increases approximately 40 mV per $1 \mathrm{~A} / \mu \mathrm{s}$ of the slew rate setting.
	Current		100 A
	Power		330 W
	Minimum start voltage *1		50 mV (typ)
Constant Current (CC) mode	Operating range	H	0 A to 100 A
		M	0 A to 10 A
		L	0 A to 1 A
	Setting range	H	0 A to 105 A
		M	0 A to 10.5 A
		L	0 A to 1.05 A
	Resolution	H	5 mA
		M	0.5 mA
		L	0.05 mA
	Accuracy of setting	H, M, L	$\pm\left(0.2 \%\right.$ of set $+0.1 \%$ of f.s. ${ }^{2}$) + Vin/150 ${ }^{*} 3$
	Input voltage variation *4	H, M, L	$\pm\left(0.1 \%\right.$ of set $+0.02 \%$ of f.s. ${ }^{2}$)
	Ripple	rms *5	8 mA
		p-p * 6	80 mA
Constant Resistance (CR) mode	Operating range	H	330 Sto 6 mS
			($3.03 \mathrm{~m} \Omega$ to 166.7Ω)
		M	$33.3 \mathrm{Sto} 600 \mu \mathrm{~S}$
			(30.3 m m to 1.667 k)
		L	$3.3 \mathrm{Sto} 60 \mu \mathrm{~S}$
			($303 \mathrm{~m} \mathrm{\Omega}$ to 16.67 k)
	Setting range	H	346.5 S to 0 S
			(2.886 m Ω to OPEN)
		M	34.65 Sto 0 S
			($28.86 \mathrm{~m} \Omega$ to OPEN)
		L	3.465 S to 0 S
			(288.6 m Ω to OPEN)
	Resolution	H	6 ms
		M	$600 \mu \mathrm{~S}$
		L	$60 \mu \mathrm{~S}$
	Accuracy of setting ${ }^{7}$	H, M, L	$\pm\left(0.5 \%\right.$ of set ${ }^{*} 8+0.5 \%$ of f.s. ${ }^{2}$) + Vin/150 k
Constant Voltage (CV) mode	Operating range	H	0.3 V to 30 V
		L	0.3 V to 4 V
	Setting range	H	0 V to 31.5 V
		L	0 V to 4.2 V
	Resolution	H	2 mV
		L	$200 \mu \mathrm{~V}$
	Accuracy of setting		$\pm(0.1 \%$ of set $+0.1 \%$ of f.s.)
	Input current variation *9		12 mV
Constant Power (CP) mode	Operating range	H	33 W to 330 W
		M	3.3 W to 33 W
		L	0.33 W to 3.3 W
	Setting range	H	0 W to 346.5 W
		M	0 W to 34.65 W
		L	0 W to 3.465 W
	Resolution	H	20 mW
		M	2 mW
		L	0.2 mW
	Accuracy of setting	H, M, L	\pm (2.5 \% of f.s. ${ }^{* 2}$)
Voltmeter	Display	H	0.000 V to 30.000 V
		L	0.0000 V to 4.0000 V
	Accuracy		\pm (0.1% of rdg $+0.1 \%$ of f.s.)
Ammeter	Display	H, M	0.00 A to 100.00 A
		L	0.0000 A to 1.0000 A
	Accuracy		\pm (0.2% of rdg $+0.3 \%$ of f.s.)
Wattmeter	Display	H, M	0.00 W to 330.00 W
		L"15	0.000 W to 30.000 W
		$L^{*} 16$	0.0000 W to 3.3000 W
Switching mode	Operation mode		CC/CR mode
	Selectable frequency range		1 Hz to 50 kHz
	Duty cycle setting		5% to $95 \% 1 \%$ step ${ }^{10}$
	Accuracy of frequency setting		$\pm(0.5 \%$ of set)
Slew rate	Selectable range (CC)	H	$5 \mathrm{~mA} / \mu \mathrm{s}$ to $50 \mathrm{~A} / \mathrm{\mu s}$
		M	$500 \mu \mathrm{~A} / \mathrm{ss}$ to $5 \mathrm{~A} / \mathrm{\mu s}$
		L	$50 \mu \mathrm{~A} / \mathrm{\mu}$ to $500 \mathrm{~mA} / \mu \mathrm{s}$
	Accuracy of setting *11		$\pm(10 \%$ of set $+0.8 \mu \mathrm{~s})$
Soft start	Operation mode		CC mode
	Selectable time range *12		Off, $100 \mu \mathrm{~s}, 200 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1000 \mu \mathrm{~s}, 2 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}$
	Accuracy of setting		$\pm(30 \%$ of set $+10 \mu \mathrm{~s})$
Response Remote sensing	Response speed		NORMAL, FAST
	Sensing voltage that can be compensated		3 V for a single line
Protection function	Overvoltage protection (OVP)		Turns off the load at 115% of the rated voltage
	Overcurrent protection (OCP)		Setting range 10% to 110% of the rated current Load off or limit selectable
	Overpower protection (OPP)		Setting range 10% to 110% of the rated power Load off or limit selectable
	Overheat protection (OHP)		Turns off the load when the heat sink temperature reaches $90^{\circ} \mathrm{C}$
	Undervoltage protection (UVP) Reverse connection protection (REV)		Turns off the load when detected. Can be set in the range of 0.3 V to 30 V
			By diode

model			PLZ334WL	
Sequence function	Normal sequence			
	Operation mode		$\mathrm{CC}, \mathrm{CR}, \mathrm{CV}, \mathrm{CP}$	
	Maximum number of steps		256	
	Step execution time		1 ms to 999 h 59 min	
	Resolution		$1 \mathrm{~ms}, 100 \mathrm{~ms}, 1 \mathrm{~s}, 10 \mathrm{~s}, 1 \mathrm{~min}$	
	Fast sequence			
	Operation mode		CC, CR	
	Maximum number of steps		1024	
	Step execution time		$25 \mu \mathrm{~s}$ to 100 ms	
	Resolution		$25 \mu \mathrm{~s}$ ($25 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$)	
			$100 \mu \mathrm{~s}(100 \mu \mathrm{~s}$ to 100 ms)	
Other functions	Elapsed time display		Measures the time from load on to load off. On/Off selectable. Measures from 1 s up to 999 h 59 min 59 s .	
	Auto load off timer		Measures the time from load on to load off. Can be set in the range of 1 s to 999 h 59 min 59 s or off.	
Input / Output signal	J1 connector		26 -pin MLL connector	
		cont MODE	CC/CR/CP External Voltage Control, 0 to 100% of the rating of Range by 0 to 10 V	
		cont ADD	CC mode External Voltage Control, 0 to 100% of the Local setting value of the rating Range by 0 to $\pm 10 \mathrm{~V}$, Adding up the value to the setting value of ExtCont.	
		cont CV	CV mode External Voltage Control, 0 to 100% of the rating of Range by 0 to 10 V	
	IMON		Current monitor output, 10 V.f.s. (H/L range), 1 Vf.s. (M range)	
		CONT INPUT	CMOS signal L level (or H level) Load On, Switchable to the logic level	
		GE CONT	External range switch input, 2 bit	
		RM INPUT	The alarm activates when the L level of CMO signal is applied for more than $10 \mu \mathrm{~s}$. The internal circuit pulls up to 5 V by $10 \mathrm{k} \Omega$	
		INPUT	When it is in the pause condition, the pause can be cancelled when the L level of CMOS signal is applied for more than $10 \mu \mathrm{~s}$. The internal circuit pulls up to 5 V by $10 \mathrm{k} \Omega$	
		RM CLEAR INPUT	The alarm can be cleared when the L level of CMOS signal is applied for more than 100 ms . The internal circuit pulls up to 5 V by $10 \mathrm{k} \Omega$	
		ON STATUS	On when the load is on. Open collector by the photo coupler	
		GE STATUS	Range status output. 2 bit	
		m Status	On when the alarm is on(OVP, OCP, OPP, OHP, REV, UVP) or Turns on when the external alarm is applied	
	SHO	RT SIGNAL OUT	Relay contact output (DC30 V/1 A)	
	Front panel BNC c	connector		
		OUT	Outputs a pulse during sequence operation and switching operation.	
		N OUT	$1 \mathrm{~V} . \mathrm{s}(\mathrm{H} / \mathrm{L}$ range), $0.1 \mathrm{~V} . \mathrm{s}(\mathrm{M}$ range)/solated to the internal common(connected to the chassis potential)	
Communication function	GPIB, RS-232C, and USB interfaces are equipped as standard.			
General Specifications	Input voltage range		$100 \mathrm{~V} \mathrm{AC} \mathrm{to} 240 \mathrm{~V} \mathrm{AC} \mathrm{(} 90 \mathrm{~V}$ AC to 250 V AC), Single phase	
	Input frequency range		47 Hz to 63 Hz	
	Power consumption		95 VAmax	
	Inrush current ${ }^{*} 13$		65 Amax	
	Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	
	Operating humidity range		20% to $85 \% \mathrm{RH}$ (without condensation)	
	Storage temperature range		$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
	Storage humidity range		90% RH or less (without condensation)	
	Isolation voltage		$\pm 500 \mathrm{~V}$	
	Insulation resistance	Primary - input terminal	$500 \mathrm{VDC}$,30 M or more (ambient humidity of $70 \% \mathrm{RH}$ or less)	
		Primary - chassis	$500 \mathrm{VDC}$,30 M or more (ambient humidity of $70 \% \mathrm{RH}$ or less)	
		Input terminal - chassis	$500 \mathrm{VDC}, 30 \mathrm{M}$ or more(ambient humidity of $70 \% \mathrm{RH}$ or less)	
	Withstand voltage	Primary - input terminal	No abnormalities at 1500 VAC for 1 minute.	
		Primary - chassis	No abnormalities at 1500 VAC for 1 minute.	
	Accessories		Setup Guide, Quick Reference (1 each for English and Japanese), CD-R (Contains the User's Manual and the Communication Interface Manual), Power cord, Set of screws for the load input terminal (2 sets.), Load input terminal cover, Screws for the Input terminal cover (2 pcs.), Protection dummy plug for J1 terminal, Connecting cable to the chassis	
	Safety * 14		Conforms to the requirements of the following directive and standard. Low Voltage Directive 2006/96/EC, EN61010-1:2001 Class I Pollution degree 2	
	Weight		Approx. $8.0 \mathrm{~kg}(17.64 \mathrm{lbs})$	
	Dimensions (mm(inch)(maximum)		$214.5\left(8.44^{\prime \prime}\right) \mathrm{W} \times 124\left(4.88{ }^{\prime \prime}\right)\left(155\left(6.1^{\prime \prime}\right) \mathrm{H} \times 400\left(15.75{ }^{\prime \prime}\right)\left(455\left(17.91^{\prime \prime}\right)\right) \mathrm{D}\right.$	
*1 Minimum voltage at which the current starts flowing to the electronic load. At the load input terminal. *2 In the M range, it applies for the full scale of the H range *3 Vin: Input terminal voltage or the sensing voltage of the electronic load. *4 When the input voltage is varied from 0.3 V to 30 V at a current of the rated power/30 V *5 Measurement frequency bandwidth: 10 Hz to 1 MHz *6 Measurement frequency bandwidth: 10 Hz to 20 MHz *7 Conversion rate of the input current. At the sensing terminal. *8 set=Vin/Rset *9 With respect to a change in the current of 10% to 100% of the rating at an input voltage of 0.3 V (during remote sensing) *10 The minimum time width is $2 \mu \mathrm{~s}$. Between 5 kHz to 50 kHz , the maximum duty cycle is limited by the minimum time width. *11 Time to reach from 10% to 90% when the current is varied from 2% to 100% (20% to 100% in M range) *12 Time to reach from 10% to 90% of the input current *13 Approximately 35 A for the input voltage of AC100 V *14 This product is categorized in the "Class I". The protective conductor terminal of this product must be connected to the ground. The safety can not be guaranteed when it is not connected to the ground properly. *15 In a mode other than CP mode *16 In CP mode				

Multifunctional Electronic Load (CC/CV/CR/CP)

PLZ-4WH Series

Dimensions

Type I : 214.5(8.44")W $\times 124\left(4.88^{\prime \prime}\right) \mathrm{H} \times 400\left(15.75^{\prime \prime}\right) \mathrm{Dmm}$
Type II: 429.5(16.91")W $\times 128\left(5.04^{\prime \prime}\right) \mathrm{H} \times 400\left(15.75^{\prime \prime}\right) \mathrm{Dmm}$

Accessories

Setup Guide, Quick Reference (1 each for English and Japanese), CD-R(Contains the User's Manual and the Communication Interface Manual), Power cord (with plug, length: 2.4 m), Load input terminal cover, Lockplate for the load input terminal cover (2 pcs.), Set of screws for the load input terminal (2 sets.)

High-Voltage Electronic Load 650 V! For EV and HEV high-voltage converters. With the booster, extended capacity at a low cost can be realized!

Abstract

In recent years, the market trend of various devices that compose in the automotive electronics such as EV, HEV, and the new energy market for PV power generation, fuel cells, secondary batteries have been moved to higher voltage and larger capacities. At the same time, it has increased the demand for the Electronic Load evaluation equipment to meet these new requirement. The PLZ-4WH Series continues to provide excellent operability of the conventional model (PLZ-4W Series) while extending the maximum operating voltage to 650 V . Furthermore, when the booster unit (PLZ2004WHB) is connected, it can be realized up to $9 \mathrm{~kW} / 450$ A with less space and at a low cost. The USB, GPIB, and RS-232C comes as standard interface that supports automated testing applications.

Features

Maximum operating voltage: 650 V

- With connecting boosters, maximum of $9 \mathrm{~kW} / 450 \mathrm{~A}$

■ 6 operation modes (CC, CR, CV, CP, CC+CV, CR + CV)

- Voltage monitor terminal for monitoring high voltage
- Sequence function (up to 1024 steps)
- Remote sensing function
- Soft start function
- Equipped with various types of protection circuits:

Over Voltage Protection(OVP), Over Current Protection(OCP), Over Power Protection(OPP), Over Heat Protection(OHP), Under Voltage Protection(UVP), And Reverse Connection Protection(REV)

- GPIB/RS232C/USB are standard interface

Functions

- Operating range up to 650 V

The PLZ-4WH supports input voltages up to 650 V , and it can be used to evaluate EV and HEV in-vehicle chargers, DC/DC converters, and battery cells; power supplies for high-voltage DC electric supply systems; and it also performs PFC tests on European and other three-phase 400 V system input power supplies; and evaluation test of high-voltage parts related to such equipment. Moreover, it achieves to enlarge further operating range. (See the figure below.) It can operate from 5 V , and even the current range is more than 0.5 V and less than 5 V , it can be used with reduced current.

[^2]■ Booster unit PLZ2004WHB*
By connecting up to 4 units of PLZ2004WHB boosters (sold separately) combined with the PLZ1004WH, it is possible to configure the system as an Electronic Load unit for up to $9 \mathrm{~kW} / 450$ A. Compared to parallel operation of the same model, size (space) reductions of up to about 30%, can be achieved. Incidentally, optional PC01-PLZ-4W and PC02-PLZ-4W parallel operation cables will be required for connections depend on the number of units to be connected.

[^3]
Functions

Low range (1/100) feature

In CC, CR , and CP modes, three ranges are available: H, M, and L .
The L range is $1 / 100$, enabling coverage from low to high power with a single unit.

Current setting resolution

	PLZ164WH	PLZ334WH	PLZ1004WH
H	$300 \mu \mathrm{~A}$	1 mA	2 mA
M	$30 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$
L	$3 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$

Options

- Accessory Kit

OP01-PLZ-4W
(used for the connection of J1 connector on the rear panel when operating by external control)

- Connector, Semi-cover, Pin 20 pcs.

Sequence Creation Software
Wavy for PLZ-4W

- Parallel Operation Cable

PC01-PLZ-4W
(for boosters and master/slave units, 300 mm)
PC02-PLZ-4W
(for between master unit and booster unit, 550 mm)

Parallel operation

Parallel operation without the use of boosters is also possible up to five units of the same model, including the master unit, can be connected in parallel ($5 \mathrm{~kW} / 250$ A maximum). In this case, the system operates under the masterslave configuration, and the master unit controls and displays the entire system. Note that optional PC01-PLZ-4W parallel operation cables will be required for connections depend on the number of units to be connected.

PLZ2004WHB Specifications

Model		PLZ2004WHB
General specifications		
Input voltage range		100 Vac to $240 \mathrm{Vac}(90 \mathrm{Vac}$ to 250 Vac) single phase, continuous
Input frequency range		47 Hz to 63 Hz
Power consumption		200 VAmax
Inrush current*1		120 Amax
Protective conductor current		$600 \mu \mathrm{~A}$ (typical: $100 \mathrm{~V}, 50 \mathrm{~Hz}$)
Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Operating humidity range		20 \% to 85% rh (no condensation)
Storage temperature range		$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage humidity range		90% rh or less (no condensation)
Ground voltage		$\pm 750 \mathrm{Vdc}$
Insulation resistance	Primary to input terminal	$1000 \mathrm{Vdc}, 30 \mathrm{M} \Omega$ or more (ambient temperature with 70% rh or less)
	Primary to chassis	$1000 \mathrm{Vdc}, 30 \mathrm{M} \Omega$ or more (ambient temperature with 70% rh or less)
	Input terminal to chassis	$1000 \mathrm{Vdc}, 30 \mathrm{M} \Omega$ or more (ambient temperature with 70% rh or less)
Withstand voltage	Primary to input terminal	1500 V Vac, no abnormality for one minute
	Primary to chassis	1500 V Vac, no abnormality for one minute
	Input terminal to chassis	1000 V Vdc, no abnormality for one minute
Dimensions (mm(inch))(maximum) / weight		430(16.93") W $\times 173$ (6.81")(190(7.48") H \times 550(21.65")(590(23.23") D /Approx. 24 kg (52.91 lbs)
Accessories	One power cord (2.4 m length with SVT3 18AWG 3P plug), one load input terminal cover, two lock plates for load input terminal cover, two screw sets for load input terminal, and one instruction manual	
Electromagnetic compatibility*2		
Safety*3	Compatibility with these standards: Low Voltage Directive 2006/95/EC EN61010-1:2001	

*1 Approximately 60 A with 100 Vac input
*2 Applies only to models that display CE marking on panel. Does not apply to specially ordered or modified items.
*3 This product is a Class 1 instrument. Be sure to ground this product's protective conductor terminal. If it is not properly grounded, safety cannot be guaranteed.

PLZ164WH / PLZ334WH / PLZ1004WH Specifications

Model	PLZ164WH	PLZ334WH	PLZ1004WH
Ratings	5 F to 650 V		
Operating voltage	8.25 A	16.5 A	50 A
Current	165 W	330 W	1000 W
Power	0.5 V		
Minimum operating voltage*1	$2.21(\mathrm{M} \Omega)^{*} 2$		
Load-off input resistance			

${ }^{*} 1$ Minimum voltage when current starts to flow through the unit. Occurs at the load input terminal. *2 When doing parallel operation with same model: 2.21 /number of units [$M \Omega$]. When doing parallel operation with PLZ2004WHB: $2.21[\mathrm{M} \Omega]$.

Model			PLZ164WH	PLZ334WH	PLZ1004WH
Constant Current (CC) mode					
Operating range	H range		0 to 8.25 A	0 to 16.5 A	0 to 50 A
	M range		0 to 825 mA	0 to 1.65 A	0 to 5 A
	L range		0 to 82.5 mA	0 to 165 mA	0 to 500 mA
Setting range	H range		0 to 8.6625 A	0 to 17.325 A	0 to 52.5 A
	M range		0 to 866.25 mA	0 to 1.7325 A	0 to 5.25 A
	L range		0 to 86.625 mA	0 to 173.25 mA	0 to 525 mA
Resolution	H range		$300 \mu \mathrm{~A}$	1 mA	2 mA
	M range		$30 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$
	L range		$3 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$
Setting accuracy	H, M range		$\pm(0.2 \%$ of set $+0.1 \%$ of f.s*1)		
	L range	At least $300 \mu \mathrm{~A}$	$\pm(0.2$ \% of set + 0.1 \% of f.s)		
		Less than $300 \mu \mathrm{~A}$	$\pm(0.2 \%$ of set $+0.1 \%$ of f.s) + Vin*2/2.21 [MS]		
	Parallel operation		$\pm(1.2 \%$ of set $+1.1 \%$ of f.s*1)		
Input voltage variation*3	H, M range		20 mA		
	L range		2 mA		
Ripple	rms*4		2 mA	4 mA	12 mA
	p-p*5		20 mA	40 mA	120 mA
	Parallel operation (typ)	rms*4	When doing parallel operation with same model: Single unit specifications x Number of units. When doing parallel operation with PLZ2004WHB: PLZ1004WH single unit specifications x (Total power capacity/kW)		

$* 1$ Full scale of range, with M range being full scale of H range
$* 2$ Vin: The voltage at the load input or sensing terminals
2 Vin: The voltage at the load input or sensing terminals
3 When the input voltage is changed from 5 V to 650 V at a current equal to the rated power/ 650 V
4 Measurement frequency bandwidth: 10 Hz to 1 MHz
*5 Measurement frequency bandwidth: 10 Hz to 20 MHz

Model		PLZ164WH	PLZ334WH	PLZ1004WH
Constant Resistance (CR) mode				
Operating range*1	H range	1.65 S to $30 \mu \mathrm{~S}$	3.3 S to $60 \mu \mathrm{~S}$	10 S to $200 \mu \mathrm{~S}$
		($606.06 \mathrm{~m} \Omega$ to $33.333 \mathrm{k} \Omega$)	($303.03 \mathrm{~m} \Omega$ to $16.666 \mathrm{k} \Omega$)	($100 \mathrm{~m} \Omega$ to 5 k)
	M range	165 mS to $3 \mu \mathrm{~S}$	330 mS to $6 \mu \mathrm{~S}$	1 S to $20 \mu \mathrm{~S}$
		(6.06Ω to $333.333 \mathrm{k} \Omega$)	(3.03Ω to $166.666 \mathrm{k} \Omega$)	(1 Ω to $49.999 \mathrm{k} \Omega$)
	L range	16.5 mS to $0.3 \mu \mathrm{~S}$	33 mS to $0.6 \mu \mathrm{~S}$	100 mS to $2 \mu \mathrm{~S}$
		(60.606Ω to $3.333 \mathrm{M} \Omega$)	(30.303Ω to $1.666 \mathrm{M} \Omega$)	(10Ω to $500 \mathrm{k} \Omega$)
Setting range	H range	1.7325 S to 0 S	3.465 S to 0 S	10.5 S to 0 S
		($577.2 \mathrm{~m} \Omega$ to OPEN)	(288.6 mS to OPEN)	($95.23 \mathrm{~m} \Omega$ to OPEN)
	M range	173.25 mS to 0 S	346.5 mS to 0 S	1.05 S to 0 S
		(5.772Ω to OPEN)	(2.886 Ω to OPEN)	($952.3 \mathrm{~m} \Omega$ to OPEN)
	L range	17.325 mS to 0 S	34.65 mS to 0 S	105 mS to 0 S
		(57.72 Ω to OPEN)	(28.86 Ω to OPEN)	(9.523 Ω to OPEN)
Resolution	H range	$30 \mu \mathrm{~S}$	$60 \mu \mathrm{~S}$	$200 \mu \mathrm{~S}$
	M range	$3 \mu \mathrm{~S}$	$6 \mu \mathrm{~S}$	$20 \mu \mathrm{~S}$
	L range	$0.3 \mu \mathrm{~S}$	$0.6 \mu \mathrm{~S}$	$2 \mu \mathrm{~S}$
Setting accuracy*2	H, M range	$\pm(0.5 \%$ of set* $3+0.5 \%$ of f.s* 4)		
	L range	$\pm\left(0.5 \%\right.$ of set*3 $+0.5 \%$ of f.s) + Vin ${ }^{*} 5 / 2.21$ [M $]$		
	Parallel operation (typ)	$\pm(1.2$ \% of set +1.1 \% of f.s*4)		

1 Conductance $[\mathrm{S}]=$ Input current $[\mathrm{A}] /$ Input voltage $[\mathrm{V}]=1 /$ Resistance $[\Omega]$
Converted value with input current; at sensing terminal
set=Vin/Rset
4 When M range: Full scale of H range
*5 Vin: Rear load input terminal voltage or sensing terminal voltage

Model		PLZ164WH	PLZ334WH	PLZ1004WH
Slew rate				
Setting range*1	H range	$0.132 \mathrm{~mA} / \mu \mathrm{s}$ to $0.132 \mathrm{~A} / \mu \mathrm{s}$	$0.264 \mathrm{~mA} / \mu \mathrm{s}$ to $0.264 \mathrm{~A} / \mu \mathrm{s}$	$0.8 \mathrm{~mA} / \mathrm{\mu s}$ to $0.8 \mathrm{~A} / \mu \mathrm{s}$
	M range	$13.2 \mu \mathrm{~A} / \mu \mathrm{s}$ to $13.2 \mathrm{~mA} / \mu \mathrm{s}$	$26.4 \mu \mathrm{~A} / \mu \mathrm{s}$ to $26.4 \mathrm{~mA} / \mu \mathrm{s}$	$80 \mu \mathrm{~A} / \mu \mathrm{s}$ to $80 \mathrm{~mA} / \mu \mathrm{s}$
	L range	$1.32 \mu \mathrm{~A} / \mu \mathrm{s}$ to $1.32 \mathrm{~mA} / \mu \mathrm{s}$	$2.64 \mu \mathrm{~A} / \mu \mathrm{s}$ to $2.64 \mathrm{~mA} / \mu \mathrm{s}$	$8 \mu \mathrm{~A} / \mu \mathrm{s}$ to $8 \mathrm{~mA} / \mu \mathrm{s}$
Resolution (Setting range)	H range	$50 \mu \mathrm{~A}(13.2$ to $132[\mathrm{~mA} / \mu \mathrm{s}])$	$100 \mu \mathrm{~A}(26.4$ to 264 [mA/ $/ \mathrm{s}$])	$300 \mu \mathrm{~A}(80$ to $800[\mathrm{~mA} / \mu \mathrm{s}])$
		$5 \mu \mathrm{~A}(1.32$ to $13.2[\mathrm{~mA} / \mu \mathrm{s}])$	$10 \mu \mathrm{~A}(2.64$ to $26.4[\mathrm{~mA} / \mu \mathrm{s}])$	$30 \mu \mathrm{~A}(8$ to $80[\mathrm{~mA} / \mu \mathrm{s}])$
		$0.5 \mu \mathrm{~A}(0.132$ to $1.32[\mathrm{~mA} / \mu \mathrm{s}])$	$1 \mu \mathrm{~A}(0.264$ to $2.64[\mathrm{~mA} / \mathrm{\mu s}])$	$3 \mu \mathrm{~A}(0.8$ to $8[\mathrm{~mA} / \mu \mathrm{s}])$
	M range	$5 \mu \mathrm{~A}(1.32$ to $13.2[\mathrm{~mA} / \mu \mathrm{s}])$	$10 \mu \mathrm{~A}(2.64$ to $26.4[\mathrm{~mA} / \mu \mathrm{s})$)	$30 \mu \mathrm{~A}(8$ to $80[\mathrm{~mA} / \mu \mathrm{s}])$
		$0.5 \mu \mathrm{~A}(0.132$ to $1.32[\mathrm{~mA} / \mu \mathrm{s}])$	$1 \mu \mathrm{~A}(0.264$ to $2.64[\mathrm{~mA} / \mu \mathrm{s}])$	$3 \mu \mathrm{~A}(0.8$ to $8[\mathrm{~mA} / \mu \mathrm{s})$
		$0.05 \mu \mathrm{~A}(13.2$ to $132[\mu \mathrm{~A} / \mu \mathrm{s}])$	$0.1 \mu \mathrm{~A}(26.4$ to $264[\mu \mathrm{~A} / \mathrm{Hs}])$	$0.3 \mu \mathrm{~A}(80$ to $800[\mu \mathrm{~A} / \mu \mathrm{s}])$
	L range	$0.5 \mu \mathrm{~A}(0.132$ to $1.32[\mathrm{~mA} / \mu \mathrm{s}])$	$1 \mu \mathrm{~A}(0.264$ to $2.64[\mathrm{~mA} / \mu \mathrm{s}])$	$3 \mu \mathrm{~A}(0.8$ to $8[\mathrm{~mA} / \mu \mathrm{s})$
		$0.05 \mu \mathrm{~A}(13.2$ to $132[\mu \mathrm{~A} / \mu \mathrm{s}])$	$0.1 \mu \mathrm{~A}(26.4$ to $264[\mu \mathrm{~A} / \mu \mathrm{s}])$	$0.3 \mu \mathrm{~A}(80$ to $800[\mu \mathrm{~A} / \mu \mathrm{s}])$
		$0.005 \mu \mathrm{~A}(1.32$ to $13.2[\mu \mathrm{~A} / \mu \mathrm{s}])$	$0.01 \mu \mathrm{~A}(2.64$ to $26.4[\mu \mathrm{~A} / \mu \mathrm{s}])$	$0.03 \mu \mathrm{~A}(8$ to $80[\mu \mathrm{~A} / \mu \mathrm{s}])$
Setting accuracy*2		$\pm(10 \%$ of set + $25 \mu \mathrm{~s}$)		

[^4]*2 Time to reach 10% to 90% with respect to a 2% to 100% (or for M range a 20% to 100%) change from the rated current.

Model		PLZ164WH	PLZ334WH	PLZ1004WH
Constant Voltage (CV) mode				
Operating range	H range	5 V to 650 V		
	L range	5 V to 65 V		
Setting range	H range	0 V to 682.5 V		
	L range	0 V to 68.25 V		
Resolution	H range	20 mV		
	L range	2 mV		
Setting accuracy*1		$\pm(0.2$ \% of set $+0.2 \%$ of f.s)		
	Parallel operation (typ)	$\pm(0.2 \%$ of set $+0.2 \%$ of f.s)		
Input current fluctuation*2		65 mV		

*1 At sensing terminal during remote sensing when input voltage is within operating range. Same with parallel operation, too. *2 With respect to change in current at 10% to 100% of rated voltage with input voltage of 5 V (during remote sensing).

Model		PLZ164WH	PLZ334WH	PLZ1004WH
Constant Power (CP) mode				
Operating range	H range	16.5 W to 165 W	33 W to 330 W	100 W to 1000 W
	M range	1.65 W to 16.5 W	3.3 W to 33 W	10 W to 100 W
	L range	0.165 W to 1.65 W	0.33 W to 3.3 W	1 W to 10 W
Setting range	H range	0 W to 173.25 W	0 W to 346.5 W	0 W to 1050 W
	M range	0 W to 17.325 W	0 W to 34.65 W	0 W to 105 W
	L range	0 W to 1.7325 W	0 W to 3.465 W	0 W to 10.5 W
Resolution	H range	10 mW	20 mW	100 mW
	M range	1 mW	2 mW	10 mW
	L range	0.1 mW	0.2 mW	1 mW

\pm (3 \% of f.s*1)
$\pm(3 \%$ of $\mathrm{f} . \mathrm{s})$
$\pm\left(3 \%\right.$ of f.s $\left.+\operatorname{Vin}^{*} 2 / 2.21[\mathrm{M} \Omega]\right)$
$\pm\left(5 \%\right.$ of $\mathrm{f} . \mathrm{s}^{*} 1$) (at $\left.23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$

When M range: Full scale of H range
*2 Vin: Rear load input terminal voltage or sensing terminal voltage

Model		PLZ164WH	PLZ334WH	PLZ1004WH
Voltmeter				
Display	H range	0.00 V to 650.00 V		
	L range	0.000 V to 65.000 V		
Accuracy		$\pm(0.1$ \% of rdng +0.1 \% of f.s)		
	Parallel operation(TYP)			
Model		PLZ164WH	PLZ334WH	PLZ1004WH
Voltmeter				
Display	H, M range	0.0000 A to 8.2500 A	0.000 A to 16.500 A	0.00A to 50.000A
	L range	0.000 mA to 82.500 mA	0.00 m A to 165.00 mA	0.00 mA to 500.00 mA
Accuracy	H, M, L range	$\pm(0.2$ \% of rdng +0.3 \% of f.s*1)		
	Parallel operation	$\pm(1.2 \%$ of rdng +1.1 \% of f.s*1)		

*1 When M range: Full scale of H range

Model			PLZ164WH	PLZ334WH	PLZ1004WH
Wattmeter					
Display *1	H, M range		0.00 W to 165.00 W	0.00 W to 330.00 W	0.0 W to 1000.0 W
	$\left\lvert\, \begin{aligned} & \mathrm{L} \\ & \text { range } \end{aligned}\right.$	Other than CP mode	0.000 W to 53.625 W	0.00 W to 107.25 W	0.0 W to 325.00 W
		CP mode	0.0000 W to 1.6500 W	0.0000 W to 3.3000 W	0.000 W to 10.000 W

Model		PLZ164WH	PLZ334WH	
Switching mode				
Operating mode		CC and CR		
Duty cycle settings	5% to $95 \%{ }^{*} 1 \quad 0.1 \%$ steps			
Frequency setting range	1 Hz to 4 kHz			
Frequency setting resolution	1 Hz to 10 Hz	0.1 Hz		
	10 Hz to 100 Hz	1 Hz		
	100 Hz to 1 kHz	1 kHz to 4 kHz	100 Hz	
Frequency setting accuracy				

*1 The minimum time duration is $50 \mu \mathrm{~s}$. From 1 to 4 kHz , the maximum duty cycle is limited by it.

PLZ164WH / PLZ334WH / PLZ1004WH Specifications

Multifunctional Electronic Load (CC/CV/CR/CC+CV/CR+CV)

PLZ-U Series

This photo shows a 5 -channel frame housing 5 units. The rack mount bracket is optional

Dimensions

PLZ-30F: 292(11.5")W \times 128(5.04") $\mathrm{H} \times 400\left(15.75^{\prime \prime}\right) \mathrm{Dmm}$
PLZ-50F: 435(17.13")W $\times 128\left(5.04^{\prime \prime}\right) \mathrm{H} \times 400\left(15.75^{\prime \prime}\right) \mathrm{Dmm}$

Features

- Slew rate of $2.4 \mathrm{~A} / \mu \mathrm{s}$ in the rising and falling edges in CC mode (PLZ150U)
- Built-in three ranges; voltmeter, ammeter, and wattmeter functions that provide readings of up to five digits
- The current slew rate can be changed continuously in constant current and constant resistance modes.
- Supports 0-V input - an indispensable feature for testing singlecell fuel cells.
- Individual units (channels) can operate either independently or in synchronization.
- Up to five load units of the same model can be operated in parallel.

■ Up to three values can be stored in memory for each most frequently used operation mode and range.
■ Equipped with various types of protection circuits (over voltage protection, over current protection, over power protection, over heat protection, under voltage protection, and reverse connection protection).
■ Supports the GPIB and RS-232C interfaces as standard.
■ External control is available to turn on or off the output.

Multi-Channel Load Systems Can Be Built Easily! Operating Multiple Units in Parallel Offers Large Capacity!*

The PLZ-U Series provides a set of compact, high-performance multichannel electronic load systems capable of operating in three modes constant current, constant resistance, and constant voltage. Adopting the modular (plug-in) design, the Series consists of four models - two frame models and two load unit models. The PLZ-30F frame can house load units to support up to three channels, and the PLZ-50F frame up to five channels. The available two load unit models are 70UA (75-watt load that operates even at 0 V) and 150 U (150 -watt load that operates from 1.5 V up). Load units can be operated in parallel to increase the current capacity or power capacity. By combining different models of load units and frame, the power capacity can be changed from 75 W to 750 W (when five PLZ150U units are mounted in a PLZ-50F frame). Supporting the GPIB and RS-232C interfaces as standard, the electronic load can be built into various types of test systems, making it useful in testing fuel cells, secondary cells, DC/DC converters, switching power supplies, multiple-output power supplies, and more.

* Only load units of the same model can be operated in parallel.

Accessories

Load unit: Operation manual, Rear load input terminal cover, Load input connector screw set (2 sets/M6 bolt, M6 nut, M6 spring washer and M4 screw), Load unit attachment screw (2 pcs./M3-10 screw), Sensing terminal screw (2 pcs./M3-6 screw, attached to the unit) Frame: Operation manual, Power cord (with SVT3 18AWG 3-prong plug, cable length of 2.4 m), Front/Rear blank panel (2 pcs./PLZ30F or 4 pcs./PLZ-50F), Protection dummy plug (2 pcs./for the FRAME CONT connector, attached to the unit)

Application Software (downloadable free of charge)

Application software for controlling this system from a PC is available from our website.

[NOTICE]PLZ-70UA

The operating voltage is guaranteed by the input terminal of the load unit. Be sure to select a load cable that never inputs a voltage of 0 V or less to the load unit input terminal. This system detects the no-signal condition. The no-signal condition is detected when the voltage at the load unit input terminal is 0.3 V or less and when the input current is equal to or less than about 1% of the rating, in which case the current will stop flowing.

Options

- Control Flat Cable

PC01-PLZ-4W (300 mm)
PC02-PLZ-4W (550 mm)
(for connection between frames)

Sequence Creation Software
Wavy for PLZ-U

Parallel Operation for Larger Capacity

Up to five adjacent load units of the same models can be operated in parallel. For example, you can build a 375-watt load system by operating five PLZ70UA load units in parallel in the PLZ-50F frame or a 750-watt load system by operating five PLZ150U load units in parallel.

M: Master
S: Slave

When three load units of one model and two load units of another model are operated in parallel in the PLZ-50F frame

M: Master
S : Slave
SA: Standalone load unit

When three load units of the same model are operated in parallel and two standalone load units are operated independently in the PLZ-50F frame

Number of Modules and Capacities

Number of parallel operated load modules	PLZ70UA	PLZ150U
2	$30 \mathrm{~A} / 150 \mathrm{~W}$	$60 \mathrm{~A} / 300 \mathrm{~W}$
3	$45 \mathrm{~A} / 225 \mathrm{~W}$	$90 \mathrm{~A} / 450 \mathrm{~W}$
4	$60 \mathrm{~A} / 300 \mathrm{~W}$	$120 \mathrm{~A} / 600 \mathrm{~W}$
5	$75 \mathrm{~A} / 375 \mathrm{~W}$	$150 \mathrm{~A} / 750 \mathrm{~W}$

Frame Control

By connecting two or more frames, you can use one frame to control the other frames (up to five frames can be connected at a time).
Operations such as load on/off and preset memory call can be performed.

Ordering code * Please inquire by following code

Model name	Frame model	PLZ70UA	PLZ150U	Total number of unit
PLZ30F-70UA0-150U1	PLZ-30F	0	1	1
PLZ30F-70UA0-150U2		0	2	2
PLZ30F-70UA0-150U3		0	3	3
PLZ30F-70UA1-150U0		1	0	1
PLZ30F-70UA1-150U1		1	1	2
PLZ30F-70UA1-150U2		1	2	3
PLZ30F-70UA2-150U0		2	0	2
PLZ30F-70UA2-150U1		2	1	3
PLZ30F-70UA3-150U0		3	0	3

Model name	Frame model	PLZ70UA	PLZ150U	Total number of unit
PLZ50F-70UA0-150U1	PLZ-50F	0	1	1
PLZ50F-70UA0-150U2		0	2	2
PLZ50F-70UA0-150U3		0	3	3
PLZ50F-70UA0-150U4		0	4	4
PLZ50F-70UA0-150U5		0	5	5
PLZ50F-70UA1-150U0		1	0	1
PLZ50F-70UA1-150U1		1	1	2
PLZ50F-70UA1-150U2		1	2	3
PLZ50F-70UA1-150U3		1	3	4
PLZ50F-70UA1-150U4		1	4	5
PLZ50F-70UA2-150U0		2	0	2
PLZ50F-70UA2-150U1		2	1	3
PLZ50F-70UA2-150U2		2	2	4
PLZ50F-70UA2-150U3		2	3	5
PLZ50F-70UA3-150U0		3	0	3
PLZ50F-70UA3-150U1		3	1	4
PLZ50F-70UA3-150U2		3	2	5
PLZ50F-70UA4-150U0		4	0	4
PLZ50F-70UA4-150U1		4	1	5
PLZ50F-70UA5-150U0		5	0	5

PLZ-U Series Specifications

Model			PLZ150U	PLZ70UA
Rating				
Operating voltage (DC)			1.5 V to 150 V	0 V to 150 V
Current/power	Range	H	30 A 150 W	15 A/75 W
		M	$3 \mathrm{~A} / 150 \mathrm{~W}$	1.5 A 75 W
		L	$300 \mathrm{~mA} / 45 \mathrm{~W}$	$150 \mathrm{~mA} / 22.5 \mathrm{~W}$
Isolation voltage of the load input terminal			500 VDC	
Withstand voltage between load input terminal channels			500 VDC	
Minimum start voltage*1			0.3 V or greater	
CC mode				
Operating range	Range	H	0 A to 30 A	0 A to 15 A
		M	0 A to 3 A	0 A to 1.5 A
		L	0 A to 300 mA	0 A to 150 mA
Selectable range			0% to 105% of f.s	
Resolution	Range	H	2 mA	1 mA
		M	0.2 mA	0.1 mA
		L	0.02 mA	0.01 mA
Accuracy of setting	Range	H, M, and L	$\pm(0.2$ \% of set +0.2 \%	of f.s) $+\mathrm{Vin}^{*} 1 / 500 \mathrm{k} \Omega$
Input voltage variation*2	Range	H	2 mA	
		M	1 mA	
		L	0.1 mA	
Ripple		rms*3	3 mA	7.5 mA
		p-p*4	30 mA	50 mA
CR mode				
Operating range The value inside parentheses is the conductance. *1	Range	H	PLZ150U OPEN to $50 \mathrm{~m} \Omega(0 \mathrm{~S}$ to 20 S$)$	OPEN to $100 \mathrm{~m} \Omega$ (0 S to 10 S)
		M	OPEN to $500 \mathrm{~m} \Omega$ (0 S to 2 S)	OPEN to 1Ω (0 S to 1 S)
		L	OPEN to 5Ω (0 S to 200 mS)	OPEN to 10Ω (0 S to 100 mS)
Selectable range			0% to 105% of f.s *2	
Resolution The value inside parentheses is the operating range.	Range	H	0.2 mS (0 S to 2 S)	0.1 mS (0 S to 1 S)
			2 mS (2 S to 20 S)	1 mS (1 S to 10 S)
		M	$20 \mu \mathrm{~S}$ (0 S to 200 mS)	$10 \mu \mathrm{~S}$ (0 S to 100 mS)
			$\begin{gathered} 0.2 \mathrm{mS} \\ (200 \mathrm{mS} \text { to } 2 \mathrm{~S}) \\ \hline \end{gathered}$	$\begin{gathered} 0.1 \mathrm{mS} \\ (100 \mathrm{mS} \text { to } 1 \mathrm{~S}) \\ \hline \end{gathered}$
		L	$2 \mu \mathrm{~S}(0 \mathrm{~S}$ to 20 mS$)$	$1 \mu \mathrm{~S}(0 \mathrm{~S}$ to 10 mS$)$
			$\begin{gathered} 20 \mu \mathrm{~S} \\ (20 \mathrm{mS} \text { to } 200 \mathrm{mS}) \\ \hline \end{gathered}$	$\begin{gathered} 10 \mu \mathrm{~S} \\ (10 \mathrm{mS} \text { to } 100 \mathrm{mS}) \\ \hline \end{gathered}$
Accuracy of setting*3	Range	H, M, and L	$\begin{gathered} \pm\left(0.5 \% \text { of } \operatorname{set}^{*} 4+0.5 \% \text { of } \mathrm{f.s} \mathrm{~s}^{*} 5\right)+ \\ \operatorname{Vin} / 500 \mathrm{k} \Omega \end{gathered}$	
CV mode				
Operating range	Range	H	1.5 V to 150 V	0 V to 150 V
		L	1.5 V to 15 V	0 V to 15 V
Selectable range			0 \% to 105% of f.s	
Resolution	Range	H	10 mV	
		L	1 mV	
Accuracy of setting	Range	H and L	$\pm(0.1$ \% of set +0.1 \% of f.s)	
Input current variation*1			12 mV	

[Rating]
*1 Minimum voltage at which the current starts flowing to the PLZ-U.
(The PLZ-U detects no signal at an input voltage less than or equal to approximately 0.3 V and an input current less than or equal to approximately 1% of the range rating. Therefore, if the input voltage is gradually increased from 0 V , no current will flow until 0.3 V is exceeded. If a current greater than or equal to 1% of the range rating starts flowing, the current can flow at voltages less than equal to 0.3 V .)
[CC mode]
*1 Vin: Load input terminal voltage
*2 At a current greater than or equal to (Vin/500 k Ω)
*3 Measurement frequency bandwidth: 10 Hz to 1 MHz
*4 Measurement frequency bandwidth: 10 Hz to 20 MHz
[CR mode]
*1 Conductance $[\mathrm{S}]=($ Input current $[\mathrm{A}] /$ input voltage $[\mathrm{V}])=(1 /$ resistance $[\Omega])$
*2 Conductance f.s
*3 Converted value in terms of the input current, during remote sensing
*4 set $=$ input voltage \times specified conductance $=$ (input voltage/specified resistance)
*5 f.s = Rated current of the specified range
[CV mode]
*1 During remote sensing

Model			PLZ150U	PLZ70UA
Voltmeter				
Measurement range			0 V to 150.0 V	
Resolution	15.75 V to 150 V		0.01 V	
	0 V to 15.75 V		0.001 V	
Measurement accuracy			$\pm(0.1$ \% of rdg + 15 digits)	
Ammeter				
Measurement range	Range	H	0 A to 30 A	0 A to 15 A
		M	0 A to 3 A	0 A to 1.5 A
		L	0 mA to 300 mA	0 mA to 150 mA
Resolution	Range	H	0.001 A	
		M	0.0001 A	
		L	0.01 mA	
Measurement accuracy			$\pm(0.2 \%$ of rdg $+0.3 \%$ of f.s)	
Wattmeter				
Measurement range			0 W to 150 W	0 W to 150 W
Resolution	100 W minimum		0.01 W	
	100 W o	ater	0.1 W	
Switching mode				
Operation mode			CC and CR	
Selectable frequency range			1 Hz to 20 kHz	
Duty cycle setting			2 \% to 98 \%, 0.1 \% steps	
Frequency resolution	1 Hz to less than 1 kHz		1 Hz	
	1 kHz to less than 10 kHz		10 Hz	
	10 kHz to 20 kHz		100 Hz	
Accuracy of frequency setting			$\pm(0.5$ \% of set)	
Slew rate				
Operation mode			CC and CR	
Selectable range (CC)	Range	H	$0.10 \mathrm{~A} / \mu \mathrm{s}$ to $2.40 \mathrm{~A} / \mu \mathrm{s}$	$0.05 \mathrm{~A} / \mu$ to $1.20 \mathrm{~A} / \mu \mathrm{s}$
		M	$0.10 \mathrm{~A} / \mu \mathrm{s}$ to $0.24 \mathrm{~A} / \mu \mathrm{s}$	$0.05 \mathrm{~A} / \mu$ to $0.12 \mathrm{~A} / \mu \mathrm{s}$
		L	$24 \mathrm{~mA} / \mathrm{s}^{*} 1$	$12 \mathrm{~mA} / \mathrm{s}^{*} 1$
Selectable range (CR)	Range	H	$0.10 \mathrm{~A} / \mu \mathrm{s}$ to $0.24 \mathrm{~A} / \mu \mathrm{s}$	$0.05 \mathrm{~A} / \mu$ to $0.12 \mathrm{~A} / \mu \mathrm{s}$
		M	$24 \mathrm{~mA} / \mathrm{ss}^{*} 1$	$12 \mathrm{~mA} / \mathrm{ss}^{*} 1$
		L	$2.4 \mathrm{~mA} / \mathrm{ss}^{*} 1$	$1.2 \mathrm{~mA} / \mathrm{ss}^{*} 1$
Resolution			0.01 A/ $\mu \mathrm{s}$	
Accuracy of setting*2			$\pm(10 \%$ of set $+5 \mu \mathrm{~s}$)	
Soft start				
Operation mode			CC	
Selectable time range			$0.1,1,3,10,30,100$, or 300 ms	
Time accuracy			$\pm(30 \%$ of set $+100 \mu \mathrm{~s})$	
Sequence function				
Sequence	Operation mode		CC and CR	
	Maximum number of steps		255	
	Step execution time		1 ms to 9999 s	
	Number of loops		1 to 9999 (9999 is infinite loop)	

[Wattmeter]
*1 Product of the measured voltage and measured current
[Slew rate]
*1 Fixed value
*2 Time to reach from 10% to 90% when the current is changed from 2% to 100% of the rated current of H range.

[^5]
[^0]: A A current waveform shifting by variable slew-rate

[^1]: * Adequate slew rate performance is guaranteed as long as the change in the current remains within the $2 \%-t o-100 \%$ range of the rating.(M range 20% to 100%)
 The rise time to the rated current takes approximately $10 \mu \mathrm{~s}$. When the variation of the current value is small, the slew rate may not be achieved to the setting value.

[^2]: - Comparison with our conventional PLZ-3WH (PLZ1003WH) model

[^3]: - Specifications

 Operating voltage $\cdots \cdots \cdots5 \mathrm{~V}$ to 650 V
 Current - 100 A
 Power-.......................... 2000 W
 Input voltage $\cdots \cdots \cdots \cdots \cdots \cdots{ }^{-10 ~} 100$ VAC to 240 VAC (90 VAC to 250 VAC) single phase, continuous
 Power consumption … 200 VA(max)
 Dimensions.................Type II (The depth is $550\left(21.65^{\prime \prime}\right)\left(600\left(23.62^{\prime \prime}\right)\right.$) mm(inch))

 *Exclusively used for the PLZ1004WH. It can not be used to connect any other model.

[^4]: *1 In constant current mode. In constant resistance mode, the maximum slew rate in each range is 1/10.

[^5]: *1 In products that have load units installed, blank panels are installed in the empty slots. In products that contain the frame alone, the maximum number of blank panels are installed
 *2 Only on models that have CE marking on the panel.
 *3 Not applicable to custom order models.
 *4 This unit is a Class 1 device. Be sure to ground the protective conductor terminal of the unit. The safety of the unit is not guaranteed unless the unit is grounded properly.

